32
Views
57
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

A Permissive Retinoid X Receptor/Thyroid Hormone Receptor Heterodimer Allows Stimulation of Prolactin Gene Transcription by Thyroid Hormone and 9-cis-Retinoic Acid

, , , , &
Pages 502-513 | Received 06 Jun 2003, Accepted 02 Oct 2003, Published online: 27 Mar 2023

REFERENCES

  • Aranda, A., and Pascual A.. 2001. Nuclear hormone receptors and gene expression. Physiol. Rev. 81:1269–1304.
  • Barettino, D., Vivanco Ruiz M. M., and Stunnenberg H. G.. 1994. Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EMBO J. 13:3039–3049.
  • Barettino, D., Bugge T. H., Bartunek P., Vivanco Ruiz M. M., Sontag-Buck V., Beug H., Zenke M., and Stunnenberg H. G.. 1993. Unliganded T3R, but not its oncogenic variant, v-erbA, suppresses RAR-dependent transactivation by titrating out RXR. EMBO J. 12:1343–1353.
  • Bedó, G., Santisteban P., and Aranda A.. 1989. Retinoic acid regulates growth hormone gene expression. Nature 339:231–234.
  • Castillo, A. I., Jimenez-Lara A. M., Tolon R. M., and Aranda A.. 1999. Synergistic activation of the prolactin promoter by vitamin D receptor and GHF-1: role of the coactivators CREB-binding protein and steroid hormone receptor coactivator 1. Mol. Endocrinol. 13:1141–1154.
  • Chen, H., Lin R. J., Schiltz R. L., Chakravarti D., Nash A., Nagy L., Privalsky M. L., Nakatani Y., and Evans R. M.. 1997. Nuclear receptor coactivator ACTR is a histone acetyltransferase and forms a multimeric activation complex with p/CAF and CBP/p300. Cell 90:569–580.
  • Chen, J. D., and Evans R. M.. 1995. A transcriptional corepressor that interacts with nuclear hormone receptors. Nature 377:455–457.
  • Cohen, R. N., Putney A., Wondisford F. E., and Hollenberg A. N.. 2000. The nuclear corepressors recognize distinct nuclear receptor complexes. Mol. Endocrinol. 14:900–914.
  • Collingwood, T. N., Rajanayagam O., Adams M., Wagner R., Cavaillès V., Kalkhoven E., Matthews C., Nystrom E., Stenlof K., Lindstedt G., Tisell L., Fletterick R. J., Parker M. G., and Chatterjee V. K. K.. 1997. A natural transactivation mutation in the thyroid hormone β receptor: impaired interaction with putative transcriptional mediators. Proc. Natl. Acad. Sci. USA 94:248–253.
  • Davis, K. D., Berrodin T. J., Stelmach J. E., Winkler J. D., and Lazar M. A.. 1994. Endogenous retinoid X receptors can function as hormone receptors in pituitary cells. Mol. Cell. Biol. 14:7105–7110.
  • Day, R. N., and Maurer R.. 1989. Thyroid hormone-responsive elements of the prolactin gene: evidence for both positive and negative regulation. Mol. Endocrinol. 3:931–938.
  • Day, R. N., Koike S., Sakai M., Muramatsu M., and Maurer R.. 1990. Both Pit-1 and the estrogen receptor are required for estrogen responsiveness of the rat prolactin gene. Mol. Endocrinol. 4:1964–1971.
  • Feng, W., Ribeiro R. C., Wagner R. L., Nguyen H., Apriletti J. W., Fletterick R. J., Baxter D. J., Kushner P. J., and West B. L.. 1998. Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science 280:1747–1749.
  • Forman, B. M., Yang C.-R., Stanley F., Casanova J., and Samuels H. H.. 1988. c-erbA protooncogenes mediate thyroid hormone-dependent and -independent regulation of the rat growth hormone and prolactin genes. Mol. Endocrinol. 2:902–911.
  • Forman, B. M., Umesono K., Chen J., and Evans R. M.. 1995. Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell 81:541–550.
  • Freedman, L. P. 1999. Increasing the complexity of coactivation in nuclear receptor signaling. Cell 97:5–8.
  • García-Villalba, P., Jiménez-Lara A. M., and Aranda A.. 1996. Vitamin D interferes the transactivation of the growth hormone gene by thyroid hormone and retinoic acid. Mol. Cell. Biol. 16:318–327.
  • Germain, P., Iyer J., Zechel C., and Gronemeyer H.. 2002. Co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature 415:187–192.
  • Heery, D. M., Kalkhoven E., Hoare S., and Parker M. G.. 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736.
  • Henttu, P. M., Kalkhoven E., and Parker M. G.. 1997. AF-2 activity and recruitment of steroid receptor coactivator 1 to the estrogen receptor depend on a lysine residue conserved in nuclear receptors. Mol. Cell. Biol. 17:1832–1839.
  • Heyman, R. A., Mangelsdorf D. J., Dyck J. A., Stein R. B., Evans R. M., and Thaller C.. 1992. 9-cis-Retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68:397–406.
  • Hu, X., and Lazar M. A.. 2000. Transcriptional repression by nuclear hormone receptors. Trends Endocrinol. Metab. 11:6–10.
  • Hu, X., Li Y., and Lazar M. A.. 2001. Determinants of CoRNR-dependent repression complex assembly on nuclear hormone receptors. Mol. Cell. Biol. 21:1747–1758.
  • Ito, M., and Roeder R. G.. 2001. The TRAP/SMCC/Mediator complex and thyroid hormone receptor function. Trends Endocrinol. Metab. 12:127–134.
  • Jiménez-Lara, A. M., and Aranda A.. 1999. Vitamin D represses retinoic acid-dependent transactivation of the retinoic acid-b2 promoter: the AF-2 domain of the vitamin D receptor is involved in transrepression. Endocrinology 140:2898–2907.
  • Lala, D. S., Mukherjee R., Schulman I. G., Koch S. S. C., Dardashti L. J., Nadzan A. M., Croston G. E., Evans R. M., and Heyman R. A.. 1996. Activation of specific RXR heterodimers by an antagonist of RXR homodimers. Nature 383:450–453.
  • Levin, A. A., Sturzenbecker L. J., Kazmer S., Bosakowski A. T., Huselton C., Allenby C., Speck J., Kratzeisen C., Rosenberg M., Lovey, and Grippo J. F.. 1992. 9-cis-Retinoic acid steroisomer binds and activates the nuclear RXRα. Nature 355:359–361.
  • Li, D., Li T., Wang F., Tian H., and Samuels H. H.. 2002. Functional evidence for retinoid X receptor (RXR) as a nonsilent partner in the thyroid hormone receptor/RXR heterodimer. Mol. Cell. Biol. 22:5782–5792.
  • López-Fernández, J., Palacios D., Castillo A. I., Tolón R. M., Aranda A., and Karin M.. 2000. Differentiation of lactotrope precursor GHFT cells in response to fibroblast growth factor-2. J. Biol. Chem. 275:21653–21660.
  • Love, J. D., Gooch J. T., Benko S., Li C., Nagy L., Chatterjee K. K., Evans R. M., and Schwabe W. R.. 2002. The structural basis for the specificity of retinoid-X receptor-selective agonists: new insights into the role of helix 12. J. Biol. Chem. 277:11385–11391.
  • Mangelsdorf, D. J., and Evans R. M.. 1995. The RXR heterodimers and orphan receptors. Cell 83:841–850.
  • McKenna, N. J., and O'Malley B. W.. 2002. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–474.
  • Nagy, L., Kao H. Y., Love J. D., Li C., Banayo E., Gooch J. T., Chatterjee K. V., Evans R. M., and Schwabe J. W.. 1999. Mechanism of corepressor binding and release from nuclear receptors. Genes Dev. 15:3209–3216.
  • Nowakowski, B. E., and Maurer R.. 1994. Multiple Pit-1-binding sites facilitate estrogen responsiveness of the prolactin gene. Mol. Endocrinol. 8:1742–1749.
  • Palomino, T., Sánchez-Pacheco A., Peña P., and Aranda A.. 1998. A direct protein to protein interaction is involved in the cooperation between thyroid hormone and retinoic acid receptors and the transcription factor GHF-1. FASEB J. 12:1201–1209.
  • Palomino, T., Barettino D., and Aranda A.. 1998. Role of GHF-1 in the regulation of the rat growth hormone gene promoter by thyroid hormone and retinoic acid receptors. J. Biol. Chem. 273:27541–27547.
  • Perissi, V., Staszewski L. M., McInerney E. M., Kurokawa R., Krones A., Rose D. W., Lambert M. H., Milburn M. V., Glass C. K., and Rosenfeld M. G.. 1999. Molecular determinants of nuclear receptor-corepressor interactions. Genes Dev. 13:3198–3208.
  • Pernasseti, F., Caccavelli L., Van de Weerdt C., Martial J. A., and Muller M.. 1997. Thyroid hormone inhibits the human prolactin gene promoter by interfering with activating protein-1 and estrogen stimulations. Mol. Endocrinol. 11:986–996.
  • Rachez, C., Lemon B. D., Suldan Z., Bromleigh V., Gamble M., Naar A. M., Erdjument-Bromage H., Tempst P., and Freedman L. P.. 1999. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398:824–828.
  • Rosenfeld, M. G., and Glass C. K.. 2001. Coregulator codes of transcriptional regulation by nuclear receptors. J. Biol. Chem. 276:36865–36868.
  • Sakai, D. D., Helms S., Carlstedt-Duke J., Gustafsson J.-A., Rottman F. M., and Yamamoto K. R.. 1988. Hormone-mediated repression: a negative glucocorticoid response element from the bovine prolactin gene. Genes Dev. 2:1144–1154.
  • Sanchez-Pacheco, A., Palomino T., and Aranda A.. 1995. Retinoic acid induces expression of the transcription factor GHF-1/Pit-1 in pituitary growth hormone and prolactin-producing cell lines. Endocrinology 136:5391–5398.
  • Schulman, L. G., Li C., Schwabe J. W., and Evans R. M.. 1997. The phantom ligand effect: allosteric control of transcription by the retinoid X receptor. Genes Dev. 11:299–308.
  • Stanley, F. 1989. Transcriptional regulation of prolactin gene expression by thyroid hormone—alternate suppression and stimulation in different GH cell lines. Mol. Endocrinol. 3:1627–1633.
  • Tolon, R. M., Castillo A. I., and Aranda A.. 1998. Activation of the prolactin gene by peroxisome proliferator activated receptor-α appears to be DNA binding-independent. J. Biol. Chem. 273:26652–26661.
  • Tolón, R. M., Castillo A. I., Jimenez-Lara A. M., and Aranda A.. 2000. Association with Ets-1 causes ligand- and AF2-independent activation of nuclear receptors. Mol. Cell. Biol. 20:8793–8802.
  • Voegel, J. J., Heine M. J. S., Tini M., Vivat V., Chambon P., and Gronemeyer H.. 1998. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 17:507–519.
  • Watanabe, H., and Sasaki S.. 1995. Effect of thyroid status on the prolactin-releasing action of vasoactive intestinal peptide in humans: comparison with the action of thyrotropin-releasing hormone. Neuroendocrinology 61:207–212.
  • Westin, S., Kurokawa R., Nolte R. T., Wisely G. B., McInerney E. M., Rose D. W., Milburn M. V., Rosenfeld M. G., and Glass C. K.. 1998. Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature 395:199–202.
  • Willy, P. J., and Mangelsdorf D. J.. 1997. Unique requirements for retinoid-dependent transcriptional activation by the orphan receptor LXR. Genes Dev. 11:289–298.
  • Yoh, S. M., and Privalsky M. L.. 2001. Transcriptional repression by thyroid hormone receptors. A role for receptor homodimers in the recruitment of SMRT corepressor. J. Biol. Chem. 276:16847–16867.
  • Zhang, J., Hu X., and Lazar M. A.. 1999. A novel role for helix 12 of retinoid X receptor in regulating repression. Mol. Cell. Biol. 19:6448–6457.
  • Zhang, J., and Lazar M. A.. 2000. The mechanism of action of thyroid hormones. Annu. Rev. Physiol. 62:439–466.
  • Zhang, J., Zamir I., and Lazar M. A.. 1997. Differential recognition of liganded and unliganded thyroid hormone receptor by retinoid X receptor regulates transcriptional repression. Mol. Cell. Biol. 17:6887–6897.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.