23
Views
68
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Coordination of DNA Damage Responses via the Smc5/Smc6 Complex

, , &
Pages 662-674 | Received 20 Aug 2003, Accepted 21 Oct 2003, Published online: 27 Mar 2023

REFERENCES

  • al-Khodairy, F., and Carr A. M.. 1992. DNA repair mutants defining G2 checkpoint pathways in Schizosaccharomyces pombe. EMBO J. 11:1343–1350.
  • Aono, N., Sutani T., Tomonaga T., Mochida S., and Yanagida M.. 2002. Cnd2 has dual roles in mitotic condensation and interphase. Nature 417:197–202.
  • Barr, S. M., Leung C. G., Chang E. E., and Cimprich K. A.. 2003. ATR kinase activity regulates the intranuclear translocation of ATR and RPA following ionizing radiation. Curr. Biol. 13:1047–1051.
  • Basi, G., Schmid E., and Maundrell K.. 1993. TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123:131–136.
  • Bhat, M. A., Philp A. V., Glover D. M., and Bellen H. J.. 1996. Chromatid segregation at anaphase requires the barren product, a novel chromosome-associated protein that interacts with topoisomerase II. Cell 87:1103–1114.
  • Birkenbihl, R. P., and Subramani S.. 1992. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res. 20:6605–6611.
  • Boddy, M. N., Shanahan P., McDonald W. H., Lopez-Girona A., Noguchi E., Yates III J. R., and Russell P.. 2003. Replication checkpoint kinase Cds1 regulates recombinational repair protein Rad60. Mol. Cell. Biol. 23:5939–5946.
  • Carr, A. M. 2002. DNA structure dependent checkpoints as regulators of DNA repair. DNA Repair 1:983–994.
  • Cortez, D., Guntuku S., Qin J., and Elledge S. J.. 2001. ATR and ATRIP: partners in checkpoint signaling. Science 294:1713–1716.
  • Cuvier, O., and Hirano T.. 2003. A role of topoisomerase II in linking DNA replication to chromosome condensation. J. Cell Biol. 160:645–655.
  • D'Urso, G., Grallert B., and Nurse P.. 1995. DNA polymerase alpha, a component of the replication initiation complex, is essential for the checkpoint coupling S phase to mitosis in fission yeast. J. Cell Sci. 108:3109–3118.
  • Edwards, R. J., Bentley N. J., and Carr A. M.. 1999. A Rad3-Rad26 complex responds to DNA damage independently of other checkpoint proteins. Nat. Cell Biol. 1:393–398.
  • Fousteri, M. I., and Lehmann A. R.. 2000. A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO J. 19:1691–1702.
  • Fujioka, Y., Kimata Y., Nomaguchi K., Watanabe K., and Kohno K.. 2002. Identification of a novel non-structural maintenance of chromosomes (SMC) component of the SMC5-SMC6 complex involved in DNA repair. J. Biol. Chem. 277:21585–21591.
  • Furnari, B., Rhind N., and Russell P.. 1997. Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science 277:1495–1497.
  • Haering, C. H., Lowe J., Hochwagen A., and Nasmyth K.. 2002. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9:773–788.
  • Harvey, S. H., Krien M. J., and O'Connell M. J.. 30 January 2002, posting date. Structural maintenance of chromosomes (SMC) proteins, a family of conserved ATPases. Genome Biol. 3:REVIEWS3003. [Online.]
  • Hauf, S., Waizenegger I. C., and Peters J. M.. 2001. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293:1320–1323.
  • Hirano, T. 2002. The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev. 16:399–414.
  • Hirano, T., Kobayashi R., and Hirano M.. 1997. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89:511–521.
  • Hirano, T., and Mitchison T. J.. 1994. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79:449–458.
  • Kim, S. T., Xu B., and Kastan M. B.. 2002. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev. 16:560–570.
  • Kondo, T., Wakayama T., Naiki T., Matsumoto K., and Sugimoto K.. 2001. Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science 294:867–870.
  • Kunkel, T. A., Roberts J. D., and Zakour R. A.. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382.
  • Lehmann, A. R., Walicka M., Griffiths D. J., Murray J. M., Watts F. Z., McCready S., and Carr A. M.. 1995. The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol. Cell. Biol. 15:7067–7080.
  • Losada, A., Hirano M., and Hirano T.. 1998. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12:1986–1997.
  • Lowe, J., Cordell S. C., and van den Ent F.. 2001. Crystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted. J. Mol. Biol. 306:25–35.
  • Maeshima, K., and Laemmli U. K.. 2003. A two-step scaffolding model for mitotic chromosome assembly. Dev. Cell 4:467–480.
  • Martinho, R. G., Lindsay H. D., Flaggs G., DeMaggio A. J., Hoekstra M. F., Carr A. M., and Bentley N. J.. 1998. Analysis of Rad3 and Chk1 protein kinases defines different checkpoint responses. EMBO J. 17:7239–7249.
  • Mattingly, R. R., Sorisky A., Brann M. R., and Macara I. G.. 1994. Muscarinic receptors transform NIH 3T3 cells through a Ras-dependent signalling pathway inhibited by the Ras-GTPase-activating protein SH3 domain. Mol. Cell. Biol. 14:7943–7952.
  • Maundrell, K. 1993. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123:127–130.
  • McDonald, W. H., Pavlova Y., Yates III J. R., and Boddy M. N.. 8 September 2003. Novel essential DNA repair proteins Nse1 and Nse2 are subunits of the fission yeast Smc5-Smc6 complex. J. Biol. Chem. 10.1074/jbc.M308828200.
  • McFarlane, R. J., Carr A. M., and Price C.. 1997. Characterisation of the Schizosaccharomyces pombe rad4/cut5 mutant phenotypes: dissection of DNA replication and G2 checkpoint control function. Mol. Gen. Genet. 255:332–340.
  • Melby, T. E., Ciampaglio C. N., Briscoe G., and Erickson H. P.. 1998. The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. J. Cell Biol. 142:1595–1604.
  • Melo, J. A., Cohen J., and Toczyski D. P.. 2001. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 15:2809–2821.
  • Moreno, S., Klar A., and Nurse P.. 1991. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194:795–823.
  • Morishita, T., Tsutsui Y., Iwasaki H., and Shinagawa H.. 2002. The Schizosaccharomyces pombe rad60 gene is essential for repairing double-strand DNA breaks spontaneously occurring during replication and induced by DNA-damaging agents. Mol. Cell. Biol. 22:3537–3548.
  • O'Connell, M. J., Norbury C., and Nurse P.. 1994. Premature chromatin condensation upon accumulation of NIMA. EMBO J. 13:4926–4937.
  • O'Connell, M. J., Raleigh J. M., Verkade H. M., and Nurse P.. 1997. Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J. 16:545–554.
  • O'Connell, M. J., Walworth N. C., and Carr A. M.. 2000. The G2-phase DNA-damage checkpoint. Trends Cell Biol. 10:296–303.
  • Raleigh, J. M., and O'Connell M. J.. 2000. The G2 DNA damage checkpoint targets both wee1 and cdc25. J. Cell Sci. 113:1727–1736.
  • Rhind, N., Furnari B., and Russell P.. 1997. Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev. 11:504–511.
  • Saka, Y., Esashi F., Matsusaka T., Mochida S., and Yanagida M.. 1997. Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chk1. Genes Dev. 11:3387–3400.
  • Saka, Y., Fantes P., Sutani T., McInerny C., Creanor J., and Yanagida M.. 1994. Fission yeast cut5 links nuclear chromatin and M phase regulator in the replication checkpoint control. EMBO J. 13:5319–5329.
  • Saka, Y., Sutani T., Yamashita Y., Saitoh S., Takeuchi M., Nakaseko Y., and Yanagida M.. 1994. Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. EMBO J. 13:4938–4952.
  • Saka, Y., and Yanagida M.. 1993. Fission yeast cut5+, required for S phase onset and M phase restraint, is identical to the radiation-damage repair gene rad4+. Cell 74:383–393.
  • Sutani, T., Yuasa T., Tomonaga T., Dohmae N., Takio K., and Yanagida M.. 1999. Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes Dev. 13:2271–2283.
  • Tatebayashi, K., Kato J., and Ikeda H.. 1998. Isolation of a Schizosaccharomyces pombe rad21ts mutant that is aberrant in chromosome segregation, microtubule function, DNA repair and sensitive to hydroxyurea: possible involvement of Rad21 in ubiquitin-mediated proteolysis. Genetics 148:49–57.
  • Taylor, E. M., Moghraby J. S., Lees J. H., Smit B., Moens P. B., and Lehmann A. R.. 2001. Characterization of a novel human SMC heterodimer homologous to the Schizosaccharomyces pombe Rad18/Spr18 complex. Mol. Biol. Cell 12:1583–1594.
  • Uemura, T., Ohkura H., Adachi Y., Morino K., Shiozaki K., and Yanagida M.. 1987. DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell 50:917–925.
  • Uemura, T., and Yanagida M.. 1984. Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. EMBO J. 3:1737–1744.
  • Uhlmann, F., Lottspeich F., and Nasmyth K.. 1999. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400:37–42.
  • Uhlmann, F., and Nasmyth K.. 1998. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8:1095–1101.
  • Verkade, H. M., Bugg S. J., Lindsay H. D., Carr A. M., and O'Connell M. J.. 1999. Rad18 is required for DNA repair and checkpoint responses in fission yeast. Mol. Biol. Cell 10:2905–2918.
  • Verkade, H. M., Teli T., Laursen L. V., Murray J. M., and O'Connell M. J.. 2001. A homologue of the Rad18 postreplication repair gene is required for DNA damage responses throughout the fission yeast cell cycle. Mol. Genet. Genomics 265:993–1003.
  • Walworth, N. C., and Bernards R.. 1996. rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 271:353–356.
  • Yazdi, P. T., Wang Y., Zhao S., Patel N., Lee E. Y., and Qin J.. 2002. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev. 16:571–582.
  • Zou, L., Cortez D., and Elledge S. J.. 2002. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev. 16:198–208.
  • Zou, L., and Elledge S. J.. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.