33
Views
111
CrossRef citations to date
0
Altmetric
Gene Expression

Negative Regulation of Histone Deacetylase 8 Activity by Cyclic AMP-Dependent Protein Kinase A

, &
Pages 765-773 | Received 13 Aug 2003, Accepted 14 Oct 2003, Published online: 27 Mar 2023

REFERENCES

  • Ayer, D. E. 1999. Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol. 9:193–198.
  • Bannister, A. J., and Kouzarides T.. 1996. The CBP co-activator is a histone acetyltransferase. Nature 384:641–643.
  • Bartl, S., Taplick J., Lagger G., Khier H., Kuchler K., and Seiser C.. 1997. Identification of mouse histone deacetylase 1 as a growth factor-inducible gene. Mol. Cell. Biol. 17:5033–5043.
  • Becker, P. B., and Horz W.. 2002. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71:247–273.
  • Berger, S. L. 2002. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12:142–148.
  • Buggy, J. J., Sideris M. L., Mak P., Lorimer D. D., McIntosh B., and Clark J. M.. 2000. Cloning and characterization of a novel human histone deacetylase, HDAC8. Biochem. J. 350:199–205.
  • Cai, R., Kwon P., Yan-Neale Y., Sambuccetti L., Fischer D., and Cohen D.. 2001. Mammalian histone deacetylase 1 protein is posttranslationally modified by phosphorylation. Biochem. Biophys. Res. Commun. 283:445–453.
  • Canettieri, G., Morantte I., Guzman E., Asahara H., Herzig S., Anderson S. D., Yates III J. R., and Montminy M.. 2003. Attenuation of a phosphorylation-dependent activator by an HDAC-PP1 complex. Nat. Struct. Biol. 10:175–181.
  • Chijiwa, T., Mishima A., Hagiwara M., Sano M., Hayashi K., Inoue T., Naito K., Toshioka T., and Hidaka H.. 1990. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J. Biol. Chem. 265:5267–5272.
  • David, G., Neptune M. A., and DePinho R. A.. 2002. SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. J. Biol. Chem. 277:23658–23663.
  • Durst, K. L., Lutterbach B., Kummalue T., Friedman A. D., and Hiebert S. W.. 2003. The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain. Mol. Cell. Biol. 23:607–619.
  • Finnin, M. S., Donigian J. R., Cohen A., Richon V. M., Rifkind R. A., Marks P. A., Breslow R., and Pavletich N. P.. 1999. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401:188–193.
  • Galasinski, S. C., Resing K. A., Goodrich J. A., and Ahn N. G.. 2002. Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J. Biol. Chem. 277:19618–19626.
  • Gangolli, E. A., Belyamani M., Muchinsky S., Narula A., Burton K. A., McKnight G. S., Uhler M. D., and Idzerda R. L.. 2000. Deficient gene expression in protein kinase inhibitor α null mutant mice. Mol. Cell. Biol. 20:3442–3448.
  • Gao, L., Cueto M. A., Asselbergs F., and Atadja P.. 2002. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem. 277:25748–25755.
  • Grozinger, C. M., and Schreiber S. L.. 2000. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc. Natl. Acad. Sci. USA 97:7835–7840.
  • Hassig, C. A., Fleischer T. C., Billin A. N., Schreiber S. L., and Ayer D. E.. 1997. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89:341–347.
  • He, L. Z., Guidez F., Tribioli C., Peruzzi D., Ruthardt M., Zelent A., and Pandolfi P. P.. 1998. Distinct interactions of PML-RARα and PLZF-RARα with co-repressors determine differential responses to RA in APL. Nat. Genet. 18:126–135.
  • He, T. C., Zhou S., da Costa L. T., Yu J., Kinzler K. W., and Vogelstein B.. 1998. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95:2509–2514.
  • Hu, E., Chen Z., Fredrickson T., Zhu Y., Kirkpatrick R., Zhang G. F., Johanson K., Sung C. M., Liu R., and Winkler J.. 2000. Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J. Biol. Chem. 275:15254–15264.
  • Humphrey, G. W., Wang Y., Russanova V. R., Hirai T., Qin J., Nakatani Y., and Howard B. H.. 2001. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J. Biol. Chem. 276:6817–6824.
  • Johnstone, R. W. 2002. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug Discov. 1:287–299.
  • Kelly, W. K., O'Connor O. A., and Marks P. A.. 2002. Histone deacetylase inhibitors: from target to clinical trials. Expert Opin. Investig. Drugs 11:1695–1713.
  • Kuo, M. H., and Allis C. D.. 1998. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20:615–626.
  • Laherty, C. D., Yang W. M., Sun J. M., Davie J. R., Seto E., and Eisenman R. N.. 1997. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89:349–356.
  • Lee, H., and Bai W.. 2002. Regulation of estrogen receptor nuclear export by ligand-induced and p38-mediated receptor phosphorylation. Mol. Cell. Biol. 22:5835–5845.
  • Melnick, A., and Licht J. D.. 2002. Histone deacetylases as therapeutic targets in hematologic malignancies. Curr. Opin. Hematol. 9:322–332.
  • Michael, L. F., Asahara H., Shulman A. I., Kraus W. L., and Montminy M.. 2000. The phosphorylation status of a cyclic AMP-responsive activator is modulated via a chromatin-dependent mechanism. Mol. Cell. Biol. 20:1596–1603.
  • Neely, K. E., and Workman J. L.. 2002. The complexity of chromatin remodeling and its links to cancer. Biochim. Biophys. Acta 1603:19–29.
  • Ng, H. H., and Bird A.. 2000. Histone deacetylases: silencers for hire. Trends Biochem. Sci. 25:121–126.
  • Ogryzko, V. V., Hirai T. H., Russanova V. R., Barbie D. A., and Howard B. H.. 1996. Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol. Cell. Biol. 16:5210–5218.
  • Ogryzko, V. V., Schiltz R. L., Russanova V., Howard B. H., and Nakatani Y.. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959.
  • Pflum, M. K., Tong J. K., Lane W. S., and Schreiber S. L.. 2001. Histone deacetylase 1 phosphorylation promotes enzymatic activity and complex formation. J. Biol. Chem. 276:47733–47741.
  • Robinson-White, A., and Stratakis C. A.. 2002. Protein kinase A signaling: “cross-talk” with other pathways in endocrine cells. Ann. N. Y. Acad. Sci. 968:256–270.
  • Schmitt, J. M., and Stork P. J.. 2001. Cyclic AMP-mediated inhibition of cell growth requires the small G protein Rap1. Mol. Cell. Biol. 21:3671–3683.
  • Sun, J. M., Chen H. Y., Moniwa M., Litchfield D. W., Seto E., and Davie J. R.. 2002. The transcriptional repressor Sp3 is associated with CK2-phosphorylated histone deacetylase 2. J. Biol. Chem. 277:35783–35786.
  • Thiagalingam, S., Cheng K. H., Lee H. J., Mineva N., Thiagalingam A., and Ponte J. F.. 2003. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann. N. Y. Acad. Sci. 983:84–100.
  • Tong, J. K., Hassig C. A., Schnitzler G. R., Kingston R. E., and Schreiber S. L.. 1998. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395:917–921.
  • Tsai, S. C., and Seto E.. 2002. Regulation of histone deacetylase 2 by protein kinase CK2. J. Biol. Chem. 277:31826–31833.
  • Van den Wyngaert, I., de Vries W., Kremer A., Neefs J., Verhasselt P., Luyten W. H., and Kass S. U.. 2000. Cloning and characterization of human histone deacetylase 8. FEBS Lett. 478:77–83.
  • Vigushin, D. M., and Coombes R. C.. 2002. Histone deacetylase inhibitors in cancer treatment. Anticancer Drugs 13:1–13.
  • Wade, P. A., Gegonne A., Jones P. L., Ballestar E., Aubry F., and Wolffe A. P.. 1999. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat. Genet. 23:62–66.
  • Wang, A. H., Kruhlak M. J., Wu J., Bertos N. R., Vezmar M., Posner B. I., Bazett-Jones D. P., and Yang X. J.. 2000. Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol. Cell. Biol. 20:6904–6912.
  • Wharton, W., Savell J., Cress W. D., Seto E., and Pledger W. J.. 2000. Inhibition of mitogenesis in Balb/c-3T3 cells by trichostatin A. Multiple alterations in the induction and activation of cyclin-cyclin-dependent kinase complexes. J. Biol. Chem. 275:33981–33987.
  • Yang, X. J., and Seto E.. 2003. Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Curr. Opin. Genet. Dev. 13:143–153.
  • You, A., Tong J. K., Grozinger C. M., and Schreiber S. L.. 2001. CoREST is an integral component of the CoREST-human histone deacetylase complex. Proc. Natl. Acad. Sci. USA 98:1454–1458.
  • Zhang, Y., Iratni R., Erdjument-Bromage H., Tempst P., and Reinberg D.. 1997. Histone deacetylases and SAP18, a novel polypeptide, are components of a human sin3 complex. Cell 89:357–364.
  • Zhang, Y., LeRoy G., Seelig H. P., Lane W. S., and Reinberg D.. 1998. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95:279–289.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.