107
Views
243
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Dynamics of Human Immunodeficiency Virus Transcription: P-TEFb Phosphorylates RD and Dissociates Negative Effectors from the Transactivation Response Element

, , , , &
Pages 787-795 | Received 21 Feb 2003, Accepted 27 Oct 2003, Published online: 27 Mar 2023

REFERENCES

  • Adams, M., Sharmeen L., Kimpton J., Romeo J. M., Garcia J. V., Peterlin B. M., Groudine M., and Emerman M.. 1994. Cellular latency in human immunodeficiency virus-infected individuals with high CD4 levels can be detected by the presence of promoter-proximal transcripts. Proc. Natl. Acad. Sci. USA 91:3862–3866.
  • Barboric, M., Nissen R. M., Kanazawa S., Jabrane-Ferrat N., and Peterlin B. M.. 2001. NF-κB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol. Cell 8:327–337.
  • Bourgeois, C. F., Kim Y. K., Churcher M. J., West M. J., and Karn J.. 2002. Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences. Mol. Cell. Biol. 22:1079–1093.
  • Chao, S. H., Fujinaga K., Marion J. E., Taube R., Sausville E. A., Senderowicz A. M., Peterlin B. M., and Price D. H.. 2000. Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J. Biol. Chem. 275:28345–28348.
  • Eberhardy, S. R., and Farnham P. J.. 2001. c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J. Biol. Chem. 276:48562–48571.
  • Fujinaga, K., Cujec T. P., Peng J., Garriga J., Price D. H., Grana X., and Peterlin B. M.. 1998. The ability of positive transcription elongation factor B to transactivate human immunodeficiency virus transcription depends on a functional kinase domain, cyclin T1, and Tat. J. Virol. 72:7154–7159.
  • Fujinaga, K., Irwin D., Taube R., Zhang F., Geyer M., and Peterlin B. M.. 2002. A minimal chimera of human cyclin T1 and Tat binds TAR and activates human immunodeficiency virus transcription in murine cells. J. Virol. 76:12934–12939.
  • Fujinaga, K., Taube R., Wimmer J., Cujec T. P., and Peterlin B. M.. 1999. Interactions between human cyclin T, Tat, and the transactivation response element (TAR) are disrupted by a cysteine to tyrosine substitution found in mouse cyclin T. Proc. Natl. Acad. Sci. USA 96:1285–1290.
  • Greenblatt, J., Nodwell J. R., and Mason S. W.. 1993. Transcriptional antitermination. Nature 364:401–406.
  • Ivanov, D., Kwak Y. T., Guo J., and Gaynor R. B.. 2000. Domains in the SPT5 protein that modulate its transcriptional regulatory properties. Mol. Cell. Biol. 20:2970–2983.
  • Kanazawa, S., Okamoto T., and Peterlin B. M.. 2000. Tat competes with CIITA for the binding to P-TEFb and blocks the expression of MHC class II genes in HIV infection. Immunity 12:61–70.
  • Kao, S. Y., Calman A. F., Luciw P. A., and Peterlin B. M.. 1987. Antitermination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330:489–493.
  • Lee, D. K., Duan H. O., and Chang C.. 2001. Androgen receptor interacts with the positive elongation factor P-TEFb and enhances the efficiency of transcriptional elongation. J. Biol. Chem. 276:9978–9984.
  • Lin, X., Irwin D., Kanazawa S., Huang L., Romeo J., Yen T. S., and Peterlin B. M.. 2003. Transcriptional profiles of latent human immunodeficiency virus in infected individuals: effects of Tat on the host and reservoir. J. Virol. 77:8227–8236.
  • Mancebo, H. S., Lee G., Flygare J., Tomassini J., Luu P., Zhu Y., Peng J., Blau C., Hazuda D., Price D., and Flores O.. 1997. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev. 11:2633–2644.
  • Nagai, K., Oubridge C., Jessen T. H., Li J., and Evans P. R.. 1990. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature 348:515–520.
  • Narita, T., Yamaguchi Y., Yano K., Sugimoto S., Chanarat S., Wada T., Kim D. K., Hasegawa J., Omori M., Inukai N., Endoh M., Yamada T., and Handa H.. 2003. Human transcription elongation factor NELF: identification of novel subunits and reconstitution of the functionally active complex. Mol. Cell. Biol. 23:1863–1873.
  • Ping, Y. H., and Rana T. M.. 2001. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J. Biol. Chem. 276:12951–12958.
  • Price, D. H. 2000. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol. Cell. Biol. 20:2629–2634.
  • Simone, C., Stiegler P., Bagella L., Pucci B., Bellan C., De Falco G., De Luca A., Guanti G., Puri P. L., and Giordano A.. 2002. Activation of MyoD-dependent transcription by cdk9/cyclin T2. Oncogene 21:4137–4148.
  • Taube, R., Fujinaga K., Irwin D., Wimmer J., Geyer M., and Peterlin B. M.. 2000. Interactions between equine cyclin T1, Tat, and TAR are disrupted by a leucine-to-valine substitution found in human cyclin T1. J. Virol. 74:892–898.
  • Taube, R., Fujinaga K., Wimmer J., Barboric M., and Peterlin B. M.. 1999. Tat transactivation: a model for the regulation of eukaryotic transcriptional elongation. Virology 264:245–253.
  • Taube, R., Lin X., Irwin D., Fujinaga K., and Peterlin B. M.. 2002. Interaction between P-TEFb and the C-terminal domain of RNA polymerase II activates transcriptional elongation from sites upstream or downstream of target genes. Mol. Cell. Biol. 22:321–331.
  • Tiley, L. S., Madore S. J., Malim M. H., and Cullen B. R.. 1992. The VP16 transcription activation domain is functional when targeted to a promoter-proximal RNA sequence. Genes Dev. 6:2077–2087.
  • Wada, T., Orphanides G., Hasegawa J., Kim D. K., Shima D., Yamaguchi Y., Fukuda A., Hisatake K., Oh S., Reinberg D., and Handa H.. 2000. FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFIIH. Mol. Cell. 5:1067–1072.
  • Wada, T., Takagi T., Yamaguchi Y., Ferdous A., Imai T., Hirose S., Sugimoto S., Yano K., Hartzog G. A., Winston F., Buratowski S., and Handa H.. 1998. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12:343–356.
  • Wada, T., Takagi T., Yamaguchi Y., Watanabe D., and Handa H.. 1998. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J. 17:7395–7403.
  • Wei, P., Garber M. E., Fang S. M., Fischer W. H., and Jones K. A.. 1998. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92:451–462.
  • Yamaguchi, Y., Filipovska J., Yano K., Furuya A., Inukai N., Narita T., Wada T., Sugimoto S., Konarska M. M., and Handa H.. 2001. Stimulation of RNA polymerase II elongation by hepatitis delta antigen. Science 293:124–127.
  • Yamaguchi, Y., Inukai N., Narita T., Wada T., and Handa H.. 2002. Evidence that negative elongation factor represses transcription elongation through binding to a DRB sensitivity-inducing factor/RNA polymerase II complex and RNA. Mol. Cell. Biol. 22:2918–2927.
  • Yamaguchi, Y., Takagi T., Wada T., Yano K., Furuya A., Sugimoto S., Hasegawa J., and Handa H.. 1999. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97:41–51.
  • Zhu, Y., Pe'ery T., Peng J., Ramanathan Y., Marshall N., Marshall T., Amendt B., Mathews M. B., and Price D. H.. 1997. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev. 11:2622–2632.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.