27
Views
34
CrossRef citations to date
0
Altmetric
Gene Expression

Role of the C-Terminal Domain of RNA Polymerase II in U2 snRNA Transcription and 3′ Processing

, &
Pages 846-855 | Received 27 May 2003, Accepted 15 Oct 2003, Published online: 27 Mar 2023

REFERENCES

  • Adamczewski, J. P., Rossignol M., Tassan J. P., Nigg E. A., Moncollin V., and Egly J. M.. 1996. MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH. EMBO J. 15:1877–1884.
  • Allison, L. A., Moyle M., Shales M., and Ingles C. J.. 1985. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42:599–610.
  • Baskaran, R., Chiang G. G., Mysliwiec T., Kruh G. D., and Wang J. Y.. 1997. Tyrosine phosphorylation of RNA polymerase II carboxyl-terminal domain by the Abl-related gene product. J. Biol. Chem. 272:18905–18909.
  • Baskaran, R., Dahmus M. E., and Wang J. Y.. 1993. Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain. Proc. Natl. Acad. Sci. USA 90:11167–11171.
  • Bender, K., Blattner C., Knebel A., Iordanov M., Herrlich P., and Rahmsdorf H. J.. 1997. UV-induced signal transduction. J. Photochem. Photobiol. B 37:1–17.
  • Bernstein, L. B., Manser T., and Weiner A. M.. 1985. Human U1 small nuclear RNA genes: extensive conservation of flanking sequences suggests cycles of gene amplification and transposition. Mol. Cell. Biol. 5:2159–2171.
  • Bieniasz, P. D., Grdina T. A., Bogerd H. P., and Cullen B. R.. 1999. Recruitment of cyclin T1/P-TEFb to an HIV type 1 long terminal repeat promoter proximal RNA target is both necessary and sufficient for full activation of transcription. Proc. Natl. Acad. Sci. USA 96:7791–7796.
  • Casse, C., Giannoni F., Nguyen V. T., Dubois M. F., and Bensaude O.. 1999. The transcriptional inhibitors, actinomycin D and alpha-amanitin, activate the HIV-1 promoter and favor phosphorylation of the RNA polymerase II C-terminal domain. J. Biol. Chem. 274:16097–16106.
  • Chandrasekharappa, S. C., Smith J. H., and Eliceiri G. L.. 1983. Biosynthesis of small nuclear RNAs in human cells. J. Cell Physiol. 117:169–174.
  • Chernov, M. V., Bean L. J., Lerner N., and Stark G. R.. 2001. Regulation of ubiquitination and degradation of p53 in unstressed cells through C-terminal phosphorylation. J. Biol. Chem. 276:31819–31824.
  • Cho, E. J., Takagi T., Moore C. R., and Buratowski S.. 1997. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 11:3319–3326.
  • Choudhury, K., Choudhury I., and Eliceiri G. L.. 1989. Metabolism of small RNAs in cultured human cells. J. Cell Physiol. 138:433–438.
  • Conaway, J. W., Shilatifard A., Dvir A., and Conaway R. C.. 2000. Control of elongation by RNA polymerase II. Trends Biochem. Sci. 25:375–380.
  • Corden, J. L., Cadena D. L., Ahearn J. M., Jr., and Dahmus M. E.. 1985. A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II. Proc. Natl. Acad. Sci. USA 82:7934–7938.
  • Cuello, P., Boyd D. C., Dye M. J., Proudfoot N. J., and Murphy S.. 1999. Transcription of the human U2 snRNA genes continues beyond the 3′ box in vivo. EMBO J. 18:2867–2877.
  • Dahlberg, J. E., and Schenborn E. T.. 1988. The human U1 snRNA promoter and enhancer do not direct synthesis of messenger RNA. Nucleic Acids Res. 16:5827–5840.
  • Darzacq, X., Jady B. E., Verheggen C., Kiss A. M., Bertrand E., and Kiss T.. 2002. Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J. 21:2746–2756.
  • de Vegvar, H. E., Lund E., and Dahlberg J. E.. 1986. 3′ end formation of U1 snRNA precursors is coupled to transcription from snRNA promoters. Cell 47:259–266.
  • Donelson, J. E. 2003. Antigenic variation and the African trypanosome genome. Acta Trop. 85:391–404.
  • Eliceiri, G. L. 1979. Sensitivity of low molecular weight RNA synthesis to UV radiation. Nature 279:80–81.
  • Eliceiri, G. L., and Sayavedra M. S.. 1976. Small RNAs in the nucleus and cytoplasm of HeLa cells. Biochem. Biophys. Res. Commun. 72:507–512.
  • Fong, N., and Bentley D. L.. 2001. Capping, splicing, and 3′ processing are independently stimulated by RNA polymerase II: different functions for different segments of the CTD. Genes Dev. 15:1783–1795.
  • Gerber, H. P., Hagmann M., Seipel K., Georgiev O., West M. A., Litingtung Y., Schaffner W., and Corden J. L.. 1995. RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature 374:660–662.
  • Guilfoyle, T. J., Hagen G., and Malcolm S.. 1984. Size heterogeneity of the largest subunit of nuclear RNA polymerase II. An immunological analysis. J. Biol. Chem. 259:649–653.
  • Hellung-Larsen, P., Jensen E. G., and Frederiksen S.. 1981. Effect of 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole on the synthesis of low molecular weight, RNA components. Biochem. Biophys. Res. Commun. 99:1303–1310.
  • Hernandez, N. 1985. Formation of the 3′ end of U1 snRNA is directed by a conserved sequence located downstream of the coding region. EMBO J. 4:1827–1837.
  • Hernandez, N. 2001. Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J. Biol. Chem. 276:26733–26736.
  • Hernandez, N., and Weiner A. M.. 1986. Formation of the 3′ end of U1 snRNA requires compatible snRNA promoter elements. Cell 47:249–258.
  • Huang, Q., Jacobson M. R., and Pederson T.. 1997. 3′ processing of human pre-U2 small nuclear RNA: a base-pairing interaction between the 3′ extension of the precursor and an internal region. Mol. Cell. Biol. 17:7178–7185.
  • Huang, Q., and Pederson T.. 1999. A human U2 RNA mutant stalled in 3′ end processing is impaired in nuclear import. Nucleic Acids Res. 27:1025–1031.
  • Huber, J., Cronshagen U., Kadokura M., Marshallsay C., Wada T., Sekine M., and Luhrmann R.. 1998. Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J. 17:4114–4126.
  • Kim, W. Y., and Dahmus M. E.. 1989. The major late promoter of adenovirus-2 is accurately transcribed by RNA polymerases IIO, IIA, and IIB. J. Biol. Chem. 264:3169–3176.
  • Kim, Y. K., Bourgeois C. F., Isel C., Churcher M. J., and Karn J.. 2002. Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation. Mol. Cell. Biol. 22:4622–4637.
  • Kops, O., Zhou X. Z., and Lu K. P.. 2002. Pin1 modulates the dephosphorylation of the RNA polymerase II C-terminal domain by yeast Fcp1. FEBS Lett. 513:305–311.
  • Krumm, A., Hickey L. B., and Groudine M.. 1995. Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation. Genes Dev. 9:559–572.
  • Kuhlman, T. C., Cho H., Reinberg D., and Hernandez N.. 1999. The general transcription factors IIA, IIB, IIF, and IIE are required for RNA polymerase II transcription from the human U1 small nuclear RNA promoter. Mol. Cell. Biol. 19:2130–2141.
  • Kwek, K. Y., Murphy S., Furger A., Thomas B., O'Gorman W., Kimura H., Proudfoot N. J., and Akoulitchev A.. 2002. U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat. Struct. Biol. 9:800–805.
  • Lim, K., and Chae C. B.. 1989. A simple assay for DNA transfection by incubation of the cells in culture dishes with substrates for beta-galactosidase. BioTechniques 7:576–579.
  • Ljungman, M., O'Hagan H. M., and Paulsen M. T.. 2001. Induction of ser15 and lys382 modifications of p53 by blockage of transcription elongation. Oncogene 20:5964–5971.
  • Lund, E., and Dahlberg J. E.. 1984. True genes for human U1 small nuclear RNA. Copy number, polymorphism, and methylation. J. Biol. Chem. 259:2013–2021.
  • Luo, Z., Zheng J., Lu Y., and Bregman D. B.. 2001. Ultraviolet radiation alters the phosphorylation of RNA polymerase II large subunit and accelerates its proteasome-dependent degradation. Mutat. Res. 486:259–274.
  • Mangin, M., Ares M., Jr., and Weiner A. M.. 1986. Human U2 small nuclear RNA genes contain an upstream enhancer. EMBO J. 5:987–995.
  • Marshall, N. F., Peng J., Xie Z., and Price D. H.. 1996. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J. Biol. Chem. 271:27176–27183.
  • Mattaj, I. W. 1986. Cap trimethylation of U snRNA is cytoplasmic and dependent on U snRNP protein binding. Cell 46:905–911.
  • Mattaj, I. W., and De Robertis E. M.. 1985. Nuclear segregation of U2 snRNA requires binding of specific snRNP proteins. Cell 40:111–118.
  • McCracken, S., Fong N., Yankulov K., Ballantyne S., Pan G., Greenblatt J., Patterson S. D., Wickens M., and Bentley D. L.. 1997. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385:357–361.
  • Medlin, J. E., Uguen P., Taylor A., Bentley D. L., and Murphy S.. 2003. The C-terminal domain of pol II and a DRB-sensitive kinase are required for 3′ processing of U2 snRNA. EMBO J. 22:925–934.
  • Meininghaus, M., Chapman R. D., Horndasch M., and Eick D.. 2000. Conditional expression of RNA polymerase II in mammalian cells. Deletion of the carboxyl-terminal domain of the large subunit affects early steps in transcription. J. Biol. Chem. 275:24375–24382.
  • Mitsui, A., and Sharp P. A.. 1999. Ubiquitination of RNA polymerase II large subunit signaled by phosphorylation of carboxyl-terminal domain. Proc. Natl. Acad. Sci. USA 96:6054–6059.
  • Mone, M. J., Volker M., Nikaido O., Mullenders L. H., van Zeeland A. A., Verschure P. J., Manders E. M., and van Driel R.. 2001. Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep. 2:1013–1017.
  • Neuman de Vegvar, H. E., and Dahlberg J. E.. 1990. Nucleocytoplasmic transport and processing of small nuclear RNA precursors. Mol. Cell. Biol. 10:3365–3375.
  • Nguyen, V. T., Giannoni F., Dubois M. F., Seo S. J., Vigneron M., Kedinger C., and Bensaude O.. 1996. In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin. Nucleic Acids Res. 24:2924–2929.
  • Nguyen, V. T., Kiss T., Michels A. A., and Bensaude O.. 2001. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414:322–325.
  • O'Brien, T., Hardin S., Greenleaf A., and Lis J. T.. 1994. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 370:75–77.
  • Ostapenko, D., and Solomon M. J.. 2003. Budding yeast CTDK-I is required for DNA damage-induced transcription. Eukaryot. Cell 2:274–283.
  • Paule, M. R., and White R. J.. 2000. Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res. 28:1283–1298.
  • Payne, J. M., Laybourn P. J., and Dahmus M. E.. 1989. The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit IIa. J. Biol. Chem. 264:19621–19629.
  • Ratnasabapathy, R., Sheldon M., Johal L., and Hernandez N.. 1990. The HIV-1 long terminal repeat contains an unusual element that induces the synthesis of short RNAs from various mRNA and snRNA promoters. Genes Dev. 4:2061–2074.
  • Ro-Choi, T. S., Raj N. B., Pike L. M., and Busch H.. 1976. Effects of alpha-amanitin, cycloheximide, and thioacetamide on low molecular weight nuclear RNA. Biochemistry 15:3823–3828.
  • Rockx, D. A., Mason R., van Hoffen A., Barton M. C., Citterio E., Bregman D. B., van Zeeland A. A., Vrieling H., and Mullenders L. H.. 2000. UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proc. Natl. Acad. Sci. USA 97:10503–10508.
  • Serizawa, H., Makela T. P., Conaway J. W., Conaway R. C., Weinberg R. A., and Young R. A.. 1995. Association of Cdk-activating kinase subunits with transcription factor TFIIH. Nature 374:280–282.
  • Shiekhattar, R., Mermelstein F., Fisher R. P., Drapkin R., Dynlacht B., Wessling H. C., Morgan D. O., and Reinberg D.. 1995. Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature 374:283–287.
  • Sobell, H. M. 1985. Actinomycin and DNA transcription. Proc. Natl. Acad. Sci. USA 82:5328–5331.
  • Song, C. Z. 1996. Requirement for phosphorylation of RNA polymerase II C-terminal domain in transcription is both transcript length and promoter dependent. Biochem. Biophys. Res. Commun. 229:810–816.
  • Tschudi, C., and Ullu E.. 2002. Unconventional rules of small nuclear RNA transcription and cap modification in trypanosomatids. Gene Expr. 10:3–16.
  • Van Arsdell, S. W., and Weiner A. M.. 1984. Human genes for U2 small nuclear RNA are tandemly repeated. Mol. Cell. Biol. 4:492–499.
  • Weinberg, R. A., and Penman S.. 1968. Small molecular weight monodisperse nuclear RNA. J. Mol. Biol. 38:289–304.
  • Westin, G., Zabielski J., Hammarstrom K., Monstein H. J., Bark C., and Pettersson U.. 1984. Clustered genes for human U2 RNA. Proc. Natl. Acad. Sci. USA 81:3811–3815.
  • White, R. A., and Kunkel G. R.. 1993. Pre-messenger RNA splicing of transcripts synthesized from human small nuclear RNA gene promoters. Biochem. Biophys. Res. Commun. 195:1394–1400.
  • Yang, Z., Zhu Q., Luo K., and Zhou Q.. 2001. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414:317–322.
  • Yu, Y. T., Shu M. D., Narayanan A., Terns R. M., Terns M. P., and Steitz J. A.. 2001. Internal modification of U2 small nuclear (sn)RNA occurs in nucleoli of Xenopus oocytes. J. Cell Biol. 152:1279–1288.
  • Yuo, C. Y., Ares M., Jr., and Weiner A. M.. 1985. Sequences required for 3′ end formation of human U2 small nuclear RNA. Cell 42:193–202.
  • Zehring, W. A., Lee J. M., Weeks J. R., Jokerst R. S., and Greenleaf A. L.. 1988. The C-terminal repeat domain of RNA polymerase II largest subunit is essential in vivo but is not required for accurate transcription initiation in vitro. Proc. Natl. Acad. Sci. USA 85:3698–3702.
  • Zieve, G., Benecke B. J., and Penman S.. 1977. Synthesis of two classes of small RNA species in vivo and in vitro. Biochemistry 16:4520–4525.
  • Zieve, G., and Penman S.. 1976. Small RNA species of the HeLa cell: metabolism and subcellular localization. Cell 8:19–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.