30
Views
39
CrossRef citations to date
0
Altmetric
Gene Expression

Genome-Wide Analysis of the Relationship between Transcriptional Regulation by Rpd3p and the Histone H3 and H4 Amino Termini in Budding Yeast

, , , &
Pages 8823-8833 | Received 14 Oct 2003, Accepted 19 Jul 2004, Published online: 27 Mar 2023

REFERENCES

  • Agalioti, T., Chen G., and Thanos D.. 2002. Deciphering the transcriptional histone acetylation code for a human gene. Cell 111:381–392.
  • Benjamini, Y., and Hochberg Y.. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57:289–300.
  • Bernstein, B. E., Tong J. K., and Schreiber S. L.. 2000. Genomewide studies of histone deacetylase function in yeast. Proc. Natl. Acad. Sci. USA 97:13708–13713.
  • Brent, R., and Ptashne M.. 1984. A bacterial repressor protein or a yeast transcriptional terminator can block upstream activation of a yeast gene. Nature 312:612–615.
  • Brown, C. E., Lechner T., Howe L., and Workman J. L.. 2000. The many HATs of transcription coactivators. Trends Biochem. Sci. 25:15–19.
  • Brunet, A., Sweeney L. B., Sturgill J. F., Chua K. F., Greer P. L., Lin Y., Tran H., Ross S. E., Mostoslavsky R., Cohen H. Y., Hu L. S., Cheng H. L., Jedrychowski M. P., Gygi S. P., Sinclair D. A., Alt F. W., and Greenberg M. E.. 2004. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015.
  • Cheung, P., Allis C. D., and Sassone-Corsi P.. 2000. Signaling to chromatin through histone modifications. Cell 103:263–271.
  • Christianson, T. W., Sikorski R. S., Dante M., Shero J. H., and Hieter P.. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122.
  • Deckert, J., and Struhl K.. 2002. Targeted recruitment of Rpd3 histone deacetylase represses transcription by inhibiting recruitment of Swi/Snf, SAGA, and TATA binding protein. Mol. Cell. Biol. 22:6458–6470.
  • DeRisi, J. L., Iyer V. R., and Brown P. O.. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686.
  • Dou, Y., and Gorovsky M. A.. 2000. Phosphorylation of linker histone H1 regulates gene expression in vivo by creating a charge patch. Mol. Cell 6:225–231.
  • Durrin, L. K., Mann R. K., Kayne P. S., and Grunstein M.. 1991. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 65:1023–1031.
  • Edmondson, D. G., Smith M. M., and Roth S. Y.. 1996. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev. 10:1247–1259.
  • Eisen, M. B., Spellman P. T., Brown P. O., and Botstein D.. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95:14863–14868.
  • Galarneau, L., Nourani A., Boudreault A. A., Zhang Y., Heliot L., Allard S., Savard J., Lane W. S., Stillman D. J., and Cote J.. 2000. Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol. Cell 5:927–937.
  • Han, M., and Grunstein M.. 1988. Nucleosome loss activates yeast downstream promoters in vivo. Cell 55:1137–1145.
  • Holstege, F. C., Jennings E. G., Wyrick J. J., Lee T. I., Hengartner C. J., Green M. R., Golub T. R., Lander E. S., and Young R. A.. 1998. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95:717–728.
  • Kadosh, D., and Struhl K.. 1998. Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev. 12:797–805.
  • Kadosh, D., and Struhl K.. 1997. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89:365–371.
  • Kadosh, D., and Struhl K.. 1998. Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol. Cell. Biol. 18:5121–5127.
  • Kayne, P. S., Kim U. J., Han M., Mullen J. R., Yoshizaki F., and Grunstein M.. 1988. Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell 55:27–39.
  • Kouzarides, T. 2000. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 19:1176–1179.
  • Kurdistani, S. K., Robyr D., Tavazoie S., and Grunstein M.. 2002. Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat. Genet. 31:248–254.
  • Lohr, D., and Lopez J.. 1995. GAL4/GAL80-dependent nucleosome disruption/deposition on the upstream regions of the yeast GAL1-10 and GAL80 genes. J. Biol. Chem. 270:27671–27678.
  • Mann, R. K., and Grunstein M.. 1992. Histone H3 N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo. EMBO J. 11:3297–3306.
  • Martin, A. M., Pouchnik D. J., Walker J. L., and Wyrick J. J.. 2004. Redundant roles for histone H3 N-terminal lysine residues in subtelomeric gene repression in Saccharomyces cerevisiae. Genetics 167:1123–1132.
  • Megee, P. C., Morgan B. A., Mittman B. A., and Smith M. M.. 1990. Genetic analysis of histone H4: essential role of lysines subject to reversible acetylation. Science 247:841–845.
  • Megee, P. C., Morgan B. A., and Smith M. M.. 1995. Histone H4 and the maintenance of genome integrity. Genes Dev. 9:1716–1727.
  • Moreira, J. M., and Holmberg S.. 1998. Nucleosome structure of the yeast CHA1 promoter: analysis of activation-dependent chromatin remodeling of an RNA-polymerase-II-transcribed gene in TBP and RNA pol II mutants defective in vivo in response to acidic activators. EMBO J. 17:6028–6038.
  • Morgan, B. A., Mittman B. A., and Smith M. M.. 1991. The highly conserved N-terminal domains of histones H3 and H4 are required for normal cell cycle progression. Mol. Cell. Biol. 11:4111–4120.
  • Robinson, M. D., Grigull J., Mohammad N., and Hughes T. R.. 2002. FunSpec: a web-based cluster interpreter for yeast. BMC Bioinformatics 3:35.
  • Robyr, D., Suka Y., Xenarios I., Kurdistani S. K., Wang A., Suka N., and Grunstein M.. 2002. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109:437–446.
  • Rose, M. D., Winston F., and Hieter P.. 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Rundlett, S. E., Carmen A. A., Kobayashi R., Bavykin S., Turner B. M., and Grunstein M.. 1996. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl. Acad. Sci. USA 93:14503–14508.
  • Rundlett, S. E., Carmen A. A., Suka N., Turner B. M., and Grunstein M.. 1998. Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392:831–835.
  • Ryan, M. P., Jones R., and Morse R. H.. 1998. SWI-SNF complex participation in transcriptional activation at a step subsequent to activator binding. Mol. Cell. Biol. 18:1774–1782.
  • Ryan, M. P., Stafford G. A., Yu L., and Morse R. H.. 2000. Artificially recruited TATA-binding protein fails to remodel chromatin and does not activate three promoters that require chromatin remodeling. Mol. Cell. Biol. 20:5847–5857.
  • Sabet, N., Tong F., Madigan J. P., Volo S., Smith M. M., and Morse R. H.. 2003. Global and specific transcriptional repression by the histone H3 amino terminus in yeast. Proc. Natl. Acad. Sci. USA 100:4084–4089.
  • Sandmeier, J. J., French S., Osheim Y., Cheung W. L., Gallo C. M., Beyer A. L., and Smith J. S.. 2002. RPD3 is required for the inactivation of yeast ribosomal DNA genes in stationary phase. EMBO J. 21:4959–4968.
  • Schmitt, M. E., Brown T. A., and Trumpower B. L.. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18:3091–3092.
  • Shimizu, M., Takahashi K., Lamb T. M., Shindo H., and Mitchell A. P.. 2003. Yeast Ume6p repressor permits activator binding but restricts TBP binding at the HOP1 promoter. Nucleic Acids Res. 31:3033–3037.
  • Stafford, G. A., and Morse R. H.. 1998. Mutations in the AF-2/hormone-binding domain of the chimeric activator GAL4.estrogen receptor.VP16 inhibit hormone-dependent transcriptional activation and chromatin remodeling in yeast. J. Biol. Chem. 273:34240–34246.
  • Sterner, D. E., and Berger S. L.. 2000. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64:435–459.
  • Strahl, B. D., and Allis C. D.. 2000. The language of covalent histone modifications. Nature 403:41–45.
  • Suka, N., Suka Y., Carmen A. A., Wu J., and Grunstein M.. 2001. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol. Cell 8:473–479.
  • Taunton, J., Hassig C. A., and Schreiber S. L.. 1996. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411.
  • Thompson, J. S., Ling X., and Grunstein M.. 1994. Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature 369:245–247.
  • Turner, B. M. 1993. Decoding the nucleosome. Cell 75:5–8.
  • Turner, B. M. 2000. Histone acetylation and an epigenetic code. Bioessays 22:836–845.
  • Vogelauer, M., Wu J., Suka N., and Grunstein M.. 2000. Global histone acetylation and deacetylation in yeast. Nature 408:495–498.
  • Watson, A. D., Edmondson D. G., Bone J. R., Mukai Y., Yu Y., Du W., Stillman D. J., and Roth S. Y.. 2000. Ssn6-Tup1 interacts with class I histone deacetylases required for repression. Genes Dev. 14:2737–2744.
  • Wu, J., Suka N., Carlson M., and Grunstein M.. 2001. TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol. Cell 7:117–126.
  • Zhang, W., Bone J. R., Edmondson D. G., Turner B. M., and Roth S. Y.. 1998. Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. EMBO J. 17:3155–3167.
  • Zhang, Y., and Reinberg D.. 2001. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15:2343–2360.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.