21
Views
85
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Functional Similarity between the Peroxisomal PTS2 Receptor Binding Protein Pex18p and the N-Terminal Half of the PTS1 Receptor Pex5p

, , , &
Pages 8895-8906 | Received 02 Mar 2004, Accepted 08 Jul 2004, Published online: 27 Mar 2023

REFERENCES

  • Agarraberes, F. A., and Dice J. F.. 2001. Protein translocation across membranes. Biochim. Biophys. Acta 1513:1–24.
  • Agne, B., Meindl N. M., Niederhoff K., Einwachter H., Rehling P., Sickmann A., Meyer H. E., Girzalsky W., and Kunau W. H.. 2003. Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. Mol. Cell 11:635–646.
  • Albertini, M., Girzalsky W., Veenhuis M., and Kunau W.-H.. 2001. Pex12p of Saccharomyces cerevisiae is a component of a multi-protein complex essential for peroxisomal matrix protein import. Eur. J. Cell Biol. 80:257–270.
  • Albertini, M., Rehling P., Erdmann R., Girzalsky W., Kiel J. A. K. W., Veenhuis M., and Kunau W.-H.. 1997. Pex14p, a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways. Cell 89:83–92.
  • Barnett, P., Bottger G., Klein A. T. J., Tabak H. F., and Distel B.. 2000. The peroxisomal membrane protein Pex13p shows a novel mode of SH3 interaction. EMBO J. 19:6382–6391.
  • Baudhuin, P. 1974. Isolation of rat liver peroxisomes. Methods Enzymol. 31:356–368.
  • Bottger, G., Barnett P., Klein A. T., Kragt A., Tabak H. F., and Distel B.. 2000. Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner. Mol. Biol. Cell 11:3963–3976.
  • Braverman, N., Dodt G., Gould S. J., and Valle D.. 1998. An isoform of Pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes. Hum. Mol. Genet. 7:1195–1205.
  • Braverman, N., Steel G., Obie C., Moser A., Moser H., Gould S. J., and Valle D.. 1997. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nat. Genet. 15:369–376.
  • Brocard, C., Kragler F., Simon M. M., Schuster T., and Hartig A.. 1994. The tetratricopeptide repeat-domain of the Pas10 protein of Saccharomyces cerevisiae is essential for binding the peroxisomal targeting signal SKL. Biochem. Biophys. Res. Commun. 204:1016–1022.
  • Chevray, P. M., and Nathans D.. 1992. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc. Natl. Acad. Sci. USA 89:5789–5793.
  • Chudzik, D. M., Michels P. A., de Walque S., and Hol W. G.. 2000. Structures of type 2 peroxisomal targeting signals in two trypanosomatid aldolases. J. Mol. Biol. 300:697–707.
  • Dammai, V., and Subramani S.. 2001. The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. Cell 105:187–196.
  • de Walque, S., Kiel J. A., Veenhuis M., Opperdoes F. R., and Michels P. A.. 1999. Cloning and analysis of the PTS-1 receptor in Trypanosoma brucei. Mol. Biochem. Parasitol. 104:106–119.
  • Dmochowska, A., Dignard D., Maleszka R., and Thomas D. Y.. 1990. Structure and transcriptional control of the Saccharomyces cerevisiae POX1 gene encoding acyl-coenzyme A oxidase. Gene 88:247–252.
  • Dodt, G., Braverman N., Wong C., Moser A., Moser H. W., Watkins P., Valle D., and Gould S. J.. 1995. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat. Genet. 9:115–125.
  • Dodt, G., and Gould S. J.. 1996. Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: evidence that PTS1 protein import is mediated by a cycling receptor. J. Cell Biol. 135:1763–1774.
  • Dodt, G., Warren D., Becker E., Rehling P., and Gould S. J.. 2001. Domain mapping of human PEX5 reveals functional and structural similarities to Saccharomyces cerevisiae Pex18p and Pex21p. J. Biol. Chem. 276:41769–41781.
  • Douangamath, A., Filipp F. V., Klein A. T., Barnett P., Zou P., Voorn-Brouwer T., Vega M. C., Mayans O. M., Sattler M., Distel B., and Wilmanns M.. 2002. Topography for independent binding of alpha-helical and PPII-helical ligands to a peroxisomal SH3 domain. Mol. Cell 10:1007–1017.
  • Eckert, J. H., and Erdmann R.. 2003. Peroxisome biogenesis. Rev. Physiol. Biochem. Pharmacol. 147:75–121.
  • Einwächter, H., Sowinski S., Kunau W. H., and Schliebs W.. 2001. Yarrowia lipolytica Pex20p, Saccharomyces cerevisiae Pex18p/Pex21p and mammalian Pex5pL fulfil a common function in the early steps of the peroxisomal PTS2 import pathway. EMBO Rep. 2:1035–1039
  • Elgersma, Y., Elgersma-Hooisma M., Wenzel T., McCaffery J. M., Farquhar M. G., and Subramani S.. 1998. A mobile PTS2 receptor for peroxisomal protein import in Pichia pastoris. J. Cell Biol. 140:807–820.
  • Elgersma, Y., Kwast L., Klein A., Voorn-Brouwer T., van den Berg M., Metzig B., America T., Tabak H. F., and Distel B.. 1996. The SH3 domain of the Saccharomyces cerevisiae peroxisomal membrane protein Pex13p functions as a docking site for Pex5p, a mobile receptor for the import of PTS1 containing proteins. J. Cell Biol. 135:97–109.
  • Erdmann, R., and Blobel G.. 1996. Identification of Pex13p, a peroxisomal membrane receptor for the PTS1 recognition factor. J. Cell Biol. 135:111–121.
  • Erdmann, R., and Kunau W.-H.. 1994. Purification and immunolocalization of the peroxisomal 3-oxoacyl-CoA thiolase from Saccharomyces cerevisiae. Yeast 10:1173–1182.
  • Erdmann, R., Veenhuis M., Mertens D., and Kunau W.-H.. 1989. Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 86:2432–2436.
  • Fransen, M., Brees C., Ghys K., Amery L., Mannaerts G. P., Ladant D., and Van Veldhoven P. P.. 2002. Analysis of mammalian peroxin interactions using a non-transcription-based bacterial two-hybrid assay. Mol. Cell. Proteomics 1:243–252.
  • Fransen, M., Terlecky S. R., and Subramani S.. 1998. Identification of a human PTS1 receptor docking protein directly required for peroxisomal protein import. Proc. Natl. Acad. Sci. USA 95:8087–8092.
  • Gatto, G. J., Geisbrecht B. V., Gould S. J., and Berg J. M.. 2000. Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat. Struct. Biol. 7:1091–1095.
  • Gould, S. J., Kalish J. E., Morrell J. C., Bjorkman J., Urquhart A. J., and Crane D. I.. 1996. Pex13p is an SH3 protein of the peroxisome membrane and a docking factor for the predominantly cytoplasmic PTS1 receptor. J. Cell Biol. 135:85–95.
  • Gould, S. J., Keller G. A., Hosken N., Wilkinson J., and Subramani S.. 1989. A conserved tripeptide sorts proteins to peroxisomes. J. Cell Biol. 108:1657–1664.
  • Hazra, P. P., Suriapranata I., Snyder W. B., and Subramani S.. 2002. Peroxisome remnants in pex3delta cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes. Traffic 3:560–574.
  • Hettema, E. H., Girzalsky W., van Den Berg M., Erdmann R., and Distel B.. 2000. Saccharomyces cerevisiae Pex3p and Pex19p are required for proper localization and stability of peroxisomal membrane proteins. EMBO J. 19:223–233.
  • Higuchi, R., Krummel B., and Saiki R. K.. 1988. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16:7351–7367.
  • Hille, A., Klumperman J., Geuze H. J., Peters C., Brodsky F. M., and von Figura K.. 1992. Lysosomal acid phosphatase is internalized via clathrin-coated pits. Eur. J. Cell Biol. 59:106–115.
  • Hiltunen, J. K., Mursula A. M., Rottensteiner H., Wierenga R. K., Kastaniotis A. J., and Gurvitz A.. 2003. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 27:35–64.
  • Jardim, A., Liu W., Zheleznova E., and Ullman B.. 2000. Peroxisomal targeting signal-1 receptor protein PEX5 from Leishmania donovani. Molecular, biochemical, and immunocytochemical characterization. J. Biol. Chem. 275:13637–13644.
  • Klein, A. T., van Den Berg M., Bottger G., Tabak H. F., and Distel B.. 2002. Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p. J. Biol. Chem. 277:25011–25019.
  • Knop, M., Siegers K., Pereira G., Zachariae W., Winsor B., Nasmyth K., and Schiebel E.. 1999. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963–972.
  • Kragler, F., Lametschwandtner G., Christmann J., Hartig A., and Harada J. J.. 1998. Identification and analysis of the plant peroxisomal targeting signal 1 receptor NtPEX5. Proc. Natl. Acad. Sci. USA 95:13336–13341.
  • Lazarow, P. B. 2003. Peroxisome biogenesis: advances and conundrums. Curr. Opin. Cell Biol. 15:489–497.
  • Marzioch, M., Erdmann R., Veenhuis M., and Kunau W.-H.. 1994. PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes. EMBO J. 13:4908–4918.
  • Matsumura, T., Otera H., and Fujiki Y.. 2000. Disruption of the interaction of the longer isoform of Pex5p, Pex5pL, with Pex7p abolishes peroxisome targeting signal type 2 protein import in mammals. Study with a novel Pex5-impaired Chinese hamster ovary cell mutant. J. Biol. Chem. 275:21715–21721.
  • McCollum, D., Monosov E., and Subramani S.. 1993. The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells—the Pas8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal, and is a member of the TPR protein family. J. Cell Biol. 121:761–774.
  • McNew, J. A., and Goodman J. M.. 1994. An oligomeric protein is imported into peroxisomes in vivo. J. Cell Biol. 127:1245–1257.
  • Middleton, B. 1975. 3-Ketoacyl-CoA thiolases of mammalian tissues. Methods Enzymol. 35:128–136.
  • Neuberger, G., Maurer-Stroh S., Eisenhaber B., Hartig A., and Eisenhaber F.. 2003. Motif refinement of the peroxisomal targeting signal 1 and evaluation of taxon-specific differences. J. Mol. Biol. 328:567–579.
  • Otera, H., Harano T., Honsho M., Ghaedi K., Mukai S., Tanaka A., Kawai A., Shimizu N., and Fujiki Y.. 2000. The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p-PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J. Biol. Chem. 275:21703–21714.
  • Otera, H., Setoguchi K., Hamasaki M., Kumashiro T., Shimizu N., and Fujiki Y.. 2002. Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: conserved Pex5p WXXXF/Y motifs are critical for matrix protein import. Mol. Cell. Biol. 22:1639–1655.
  • Purdue, P. E., and Lazarow P. B.. 1994. Peroxisome biogenesis: multiple pathways of protein import. J. Biol. Chem. 269:30065–30068.
  • Purdue, P. E., and Lazarow P. B.. 2001. Pex18p is constitutively degraded during peroxisome biogenesis. J. Biol. Chem. 276:47684–47689.
  • Purdue, P. E., Yang X., and Lazarow P. B.. 1998. Pex18p and Pex21p, a novel pair of related peroxins essential for peroxisomal targeting by the PTS2 pathway. J. Cell Biol. 143:1859–1869.
  • Rehling, P., Marzioch M., Niesen F., Wittke E., Veenhuis M., and Kunau W.-H.. 1996. The import receptor for the peroxisomal targeting signal 2 (PTS2) in Saccharomyces cerevisiae is encoded by the PAS7 gene. EMBO J. 15:2901–2913.
  • Rehling, P., Skaletz-Rorowski A., Girzalsky W., Voorn-Brouwer T., Franse M. M., Distel B., Veenhuis M., Kunau W. H., and Erdmann R.. 2000. Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor Pex5p. J. Biol. Chem. 275:3593–3602.
  • Rose, M. D., Winston F., and Hieter P.. 1990. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Saidowsky, J., Dodt G., Kirchberg K., Wegner A., Nastainczyk W., Kunau W. H., and Schliebs W.. 2001. The di-aromatic pentapeptide repeats of the human peroxisome import receptor PEX5 are separate high affinity binding sites for the peroxisomal membrane protein PEX14. J. Biol. Chem. 276:34524–34529.
  • Schiestl, R. H., and Gietz R. D.. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16:339–346.
  • Schliebs, W., Saidowsky J., Agianian B., Dodt G., Herberg F. W., and Kunau W. H.. 1999. Recombinant human peroxisomal targeting signal receptor PEX5. Structural basis for interaction of pex5 with pex14. J. Biol. Chem. 274:5666–5673.
  • Schnell, D. J., and Hebert D. N.. 2003. Protein translocons: multifunctional mediators of protein translocation across membranes. Cell 112:491–505.
  • Shimizu, N., Itoh R., Hirono Y., Otera H., Ghaedi K., Tateishi K., Tamura S., Okumoto K., Harano T., Mukai S., and Fujiki Y.. 1999. The peroxin Pex14p. cDNA cloning by functional complementation on a Chinese hamster ovary cell mutant, characterization, and functional analysis. J. Biol. Chem. 274:12593–12604.
  • Sichting, M., Schell-Steven A., Prokisch H., Erdmann R., and Rottensteiner H.. 2003. Pex7p and Pex20p of Neurospora crassa function together in PTS2-dependent protein import into peroxisomes. Mol. Biol. Cell 14:810–821.
  • Smith, J. J., and Rachubinski R. A.. 2001. A role for the peroxin Pex8p in Pex20p-dependent thiolase import into peroxisomes of the yeast Yarrowia lipolytica. J. Cell Biol. 276:1618–1625.
  • Sparkes, I. A., and Baker A.. 2002. Peroxisome biogenesis and protein import in plants, animals and yeasts: enigma and variations? Mol. Membr. Biol. 19:171–185.
  • Stein, K., Schell-Steven A., Erdmann R., and Rottensteiner H.. 2002. Interactions of Pex7p and Pex18p/Pex21p with the peroxisomal docking machinery: implications for the first steps in PTS2 protein import. Mol. Cell. Biol. 22:6056–6069.
  • Swinkels, B. W., Gould S. J., Bodnar A. G., Rachubinski R. A., and Subramani S.. 1991. A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J. 10:3255–3262.
  • Szilard, R. K., and Rachubinski R. A.. 2000. Tetratricopeptide repeat domain of Yarrowia lipolytica Pex5p is essential for recognition of the type 1 peroxisomal targeting signal but does not confer full biological activity on Pex5p. Biochem. J. 346:177–184.
  • Terlecky, S. R., Nuttley W. M., McCollum D., Sock E., and Subramani S.. 1995. The Pichia pastoris peroxisomal protein PAS8p is the receptor for the C-terminal tripeptide peroxisomal targeting signal. EMBO J. 14:3627–3634.
  • Titorenko, V. I., Smith J. J., Szilard R. K., and Rachubinski R. A.. 1998. Pex20p of the yeast Yarrowia lipolytica is required for the oligomerization of thiolase in the cytosol and for its targeting to the peroxisome. J. Cell Biol. 142:403–420.
  • Tolbert, N. E. 1974. Isolation of subcellular organelles of metabolism on isopycnic sucrose gradients. Methods Enzymol. 31:734–746.
  • Urquhart, A. J., Kennedy D., Gould S. J., and Crane D. I.. 2000. Interaction of Pex5p, the type 1 peroxisome targeting signal receptor, with the peroxisomal membrane proteins Pex14p and Pex13p. J. Biol. Chem. 275:4127–4136.
  • van der Klei, I., and Veenhuis M.. 2002. Peroxisomes: flexible and dynamic organelles. Curr. Opin. Cell Biol. 14:500–505.
  • van der Klei, I. J., Hilbrands R. E., Swaving G. J., Waterham H. R., Vrieling E. G., Titorenko V. I., Cregg J. M., Harder W., and Veenhuis M.. 1995. The Hansenula polymorpha PER3 gene is essential for the import of PTS1 proteins into the peroxisomal matrix. J. Biol. Chem. 270:17229–17236.
  • Van der Leij, I., Franse M. M., Elgersma Y., Distel B., and Tabak H. F.. 1993. PAS10 is a tetratricopeptide-repeat protein that is essential for the import of most matrix proteins into peroxisomes of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90:11782–11786.
  • van der Leij, I., van den Berg M., Boot R., Franse M. M., Distel B., and Tabak H. F.. 1992. Isolation of peroxisome assembly mutants from Saccharomyces cerevisiae with different morphologies using a novel positive selection procedure. J. Cell Biol. 119:153–162.
  • Wang, D., Visser N. V., Veenhuis M., and van der Klei I. J.. 2003. Physical interactions of the peroxisomal targeting signal 1 receptor Pex5p, studied by fluorescence correlation spectroscopy. J. Biol. Chem. 278:43340–43345.
  • Waterham, H. R., Titorenko V. I., Haima P., Cregg J. M., Harder W., and Veenhuis M.. 1994. The Hansenula polymorpha PER1 gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy- and amino-terminal targeting signals. J. Cell Biol. 127:737–749.
  • Westermann, B., and Neupert W.. 2000. Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16:1421–1427.
  • Wiemer, E. A. C., Nuttley W. M., Bertolaet B. L., Li X., Francke U., Wheelock M. J., Anné J., K. R., and Subramani S.. 1995. Human peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. J. Cell Biol. 130:51–65.
  • Wimmer, C., Schmid M., Veenhuis M., and Gietl C.. 1998. The plant PTS1 receptor: similarities and differences to its human and yeast counterparts. Plant J. 16:453–464.
  • Yang, X., Purdue P. E., and Lazarow P. B.. 2001. Eci1p uses a PTS1 to enter peroxisomes: either its own or that of a partner, Dci1p. Eur. J. Cell Biol. 80:126–138.
  • Zhang, J. W., and Lazarow P. B.. 1996. PEB1 (PAS7) is an intraperoxisomal receptor for the NH2-terminal, type 2, peroxisomal targeting sequence of thiolase: Peb1p itself is targeted to peroxisomes by an NH2-terminal peptide. J. Cell Biol. 132:325–334.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.