9
Views
74
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Regulation and Recognition of SCFGrr1 Targets in the Glucose and Amino Acid Signaling Pathways

, , , &
Pages 8994-9005 | Received 08 May 2004, Accepted 15 Jul 2004, Published online: 27 Mar 2023

REFERENCES

  • Bai, C., Sen P., Hofmann K., Ma L., Goebl M., Harper J. W., and Elledge S. J.. 1996. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86:263–274.
  • Barral, Y., Jentsch S., and Mann C.. 1995. G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast. Genes Dev. 9:399–409.
  • Bernard, F., and Andre B.. 2001. Ubiquitin and the SCFGrr1 ubiquitin ligase complex are involved in the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. FEBS Lett. 496:81–85.
  • Berset, C., Griac P., Tempel R., La Rue J., Wittenberg C., and Lanker S.. 2002. Transferable domain in the G1 cyclin Cln2 sufficient to switch degradation of Sic1 from the E3 ubiquitin ligase SCFCdc4 to SCFGrr1. Mol. Cell. Biol. 22:4463–4476.
  • Blacketer, M. J., Madaule P., and Myers A. M.. 1995. Mutational analysis of morphologic differentiation in Saccharomyces cerevisiae. Genetics 140:1259–1275.
  • Deshaies, R. J. 1999. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15:435–467.
  • Didion, T., Regenberg B., Jorgensen M. U., Kielland-Brandt M. C., and Andersen H. A.. 1998. The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol. Microbiol. 27:643–650.
  • Feldman, R. M., Correll C. C., Kaplan K. B., and Deshaies R. J.. 1997. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91:221–230.
  • Flick, J. S., and Johnston M.. 1991. GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats. Mol. Cell. Biol. 11:5101–5112.
  • Flick, K. M., Spielewoy N., Kalashnikova T. I., Guaderrama M., Zhu Q., Chang H. C., and Wittenberg C.. 2003. Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol. Biol. Cell 14:3230–3241.
  • Forsberg, H., Gilstring C. F., Zargari A., Martinez P., and Ljungdahl P. O.. 2001. The role of the yeast plasma membrane SPS nutrient sensor in the metabolic response to extracellular amino acids. Mol. Microbiol. 42:215–228.
  • Forsberg, H., and Ljungdahl P. O.. 2001. Genetic and biochemical analysis of the yeast plasma membrane Ssy1p-Ptr3p-Ssy5p sensor of extracellular amino acids. Mol. Cell. Biol. 21:814–826.
  • Galan, J. M., and Peter M.. 1999. Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proc. Natl. Acad. Sci. USA 96:9124–9129.
  • Henchoz, S., Chi Y., Catarin B., Herskowitz I., Deshaies R. J., and Peter M.. 1997. Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. Genes Dev. 11:3046–3060.
  • Hershko, A., and Ciechanover A.. 1998. The ubiquitin system. Annu. Rev. Biochem. 67:425–479.
  • Hochstrasser, M. 1996. Protein degradation or regulation: Ub the judge. Cell 84:813–815.
  • Hsiung, Y. G., Chang H. C., Pellequer J. L., La Valle R., Lanker S., and Wittenberg C.. 2001. F-box protein Grr1 interacts with phosphorylated targets via the cationic surface of its leucine-rich repeat. Mol. Cell. Biol. 21:2506–2520.
  • Iraqui, I., Vissers S., Bernard F., de Craene J. O., Boles E., Urrestarazu A., and Andre B.. 1999. Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol. Cell. Biol. 19:989–1001.
  • Jaquenoud, M., Gulli M. P., Peter K., and Peter M.. 1998. The Cdc42p effector Gic2p is targeted for ubiquitin-dependent degradation by the SCFGrr1 complex. EMBO J. 17:5360–5373.
  • Kaiser, P., Flick K., Wittenberg C., and Reed S. I.. 2000. Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCFMet30-mediated inactivation of the transcription factor Met4. Cell 102:303–314.
  • Kamura, T., Koepp D. M., Conrad M. N., Skowyra D., Moreland R. J., Iliopoulos O., Lane W. S., Kaelin W. G., Jr., Elledge S. J., Conaway R. C., Harper J. W., and Conaway J. W.. 1999. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284:657–661.
  • Kaplun, L., Ivantsiv Y., Bakhrat A., and Raveh D.. 2003. DNA damage response-mediated degradation of Ho endonuclease via the ubiquitin system involves its nuclear export. J. Biol. Chem. 278:48727–48734.
  • Kishi, T., Seno T., and Yamao F.. 1998. Grr1 functions in the ubiquitin pathway in Saccharomyces cerevisiae through association with Skp1. Mol. Gen. Genet. 257:143–148.
  • Kishi, T., and Yamao F.. 1998. An essential function of Grr1 for the degradation of Cln2 is to act as a binding core that links Cln2 to Skp1. J. Cell Sci. 111:3655–3661.
  • Kitagawa, K., Skowyra D., Elledge S. J., Harper J. W., and Hieter P.. 1999. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol. Cell 4:21–33.
  • Klasson, H., Fink G. R., and Ljungdahl P. O.. 1999. Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol. Cell. Biol. 19:5405–5416.
  • Kodama, Y., Omura F., Takahashi K., Shirahige K., and Ashikari T.. 2002. Genome-wide expression analysis of genes affected by amino acid sensor Ssy1p in Saccharomyces cerevisiae. Curr. Genet. 41:63–72.
  • Kuras, L., Rouillon A., Lee T., Barbey R., Tyers M., and Thomas D.. 2002. Dual regulation of the met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment. Mol. Cell 10:69–80.
  • Lafuente, M. J., Gancedo C., Jauniaux J. C., and Gancedo J. M.. 2000. Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae. Mol. Microbiol. 35:161–172.
  • Lakshmanan, J., Mosley A. L., and Ozcan S.. 2003. Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1. Curr. Genet. 44:19–25.
  • Lanker, S., Valdivieso M. H., and Wittenberg C.. 1996. Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation. Science 271:1597–1601.
  • Li, F. N., and Johnston M.. 1997. Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. EMBO J. 16:5629–5638.
  • Loeb, J. D., Kerentseva T. A., Pan T., Sepulveda-Becerra M., and Liu H.. 1999. Saccharomyces cerevisiae G1 cyclins are differentially involved in invasive and pseudohyphal growth independent of the filamentation mitogen-activated protein kinase pathway. Genetics 153:1535–1546.
  • Longtine, M. S., McKenzie III A., Demarini D. J., Shah N. G., Wach A., Brachat A., Philippsen P., and Pringle J. R.. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961.
  • Moriya, H., and Johnston M.. 2004. Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc. Natl. Acad. Sci. USA 101:1572–1577.
  • Mosley, A. L., Lakshmanan J., Aryal B. K., and Ozcan S.. 2003. Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator. J. Biol. Chem. 278:10322–10327.
  • Nash, P., Tang X., Orlicky S., Chen Q., Gertler F. B., Mendenhall M. D., Sicheri F., Pawson T., and Tyers M.. 2001. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414:514–521.
  • Ohta, T., Michel J. J., Schottelius A. J., and Xiong Y.. 1999. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell 3:535–541.
  • Orlicky, S., Tang X., Willems A., Tyers M., and Sicheri F.. 2003. Structural basis for phospho-dependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112:243–256.
  • Ozcan, S., Freidel K., Leuker A., and Ciriacy M.. 1993. Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae. J. Bacteriol. 175:5520–5528.
  • Ozcan, S., and Johnston M.. 1995. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol. Cell. Biol. 15:1564–1572.
  • Ozcan, S., Leong T., and Johnston M.. 1996. Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription. Mol. Cell. Biol. 16:6419–6426.
  • Ozcan, S., Schulte F., Freidel K., Weber A., and Ciriacy M.. 1994. Glucose uptake and metabolism in grr1/cat80 mutants of Saccharomyces cerevisiae. Eur. J. Biochem. 224:605–611.
  • Patton, E. E., Willems A. R., Sa D., Kuras L., Thomas D., Craig K. L., and Tyers M.. 1998. Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box protein complexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev. 12:692–705.
  • Rajagolan, D. 2003. A comparison of statistical methods for analysis of high density oligonucleotide array data. Bioinformatics 19:1469–1476.
  • Robinson, L. C., Menold M. M., Garrett S., and Culbertson M. R.. 1993. Casein kinase I-like protein kinases encoded by YCK1 and YCK2 are required for yeast morphogenesis. Mol. Cell. Biol. 13:2870–2881.
  • Schmidt, M. C., McCartney R. R., Zhang X., Tillman T. S., Solimeo H., Wolfl S., Almonte C., and Watkins S. C.. 1999. Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:4561–4571.
  • Schulte, F., Wieczorke R., Hollenberg C. P., and Boles E.. 2000. The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3- and Rgt2-dependent glucose signaling in yeast. J. Bacteriol. 182:540–542.
  • Seol, J. H., Feldman R. M., Zachariae W., Shevchenko A., Correll C. C., Lyapina S., Chi Y., Galova M., Claypool J., Sandmeyer S., Nasmyth K., and Deshaies R. J.. 1999. Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev. 13:1614–1626.
  • Skowyra, D., Craig K. L., Tyers M., Elledge S. J., and Harper J. W.. 1997. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–219.
  • Skowyra, D., Koepp D. M., Kamura T., Conrad M. N., Conaway R. C., Conaway J. W., Elledge S. J., and Harper J. W.. 1999. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science 284:662–665.
  • Springael, J. Y., De Craene J. O., and Andre B.. 1999. The yeast Npi1/Rsp5 ubiquitin ligase lacking its N-terminal C2 domain is competent for ubiquitination but not for subsequent endocytosis of the gap1 permease. Biochem. Biophys. Res. Commun. 257:561–566.
  • Tomas-Cobos, L., and Sanz P.. 2002. Active Snf1 protein kinase inhibits expression of the Saccharomyces cerevisiae HXT1 glucose transporter gene. Biochem. J. 368:657–663.
  • Vallier, L. G., Coons D., Bisson L. F., and Carlson M.. 1994. Altered regulatory responses to glucose are associated with a glucose transport defect in grr1 mutants of Saccharomyces cerevisiae. Genetics 136:1279–1285.
  • Wach, A., Brachat A., Pohlmann R., and Philippsen P.. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808.
  • Willems, A. R., Lanker S., Patton E. E., Craig K. L., Nason T. F., Mathias N., Kobayashi R., Wittenberg C., and Tyers M.. 1996. Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway. Cell 86:453–463.
  • Xu, X., Wightman J. D., Geller B. L., Avram D., and Bakalinsky A. T.. 1994. Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae. Curr. Genet. 25:488–496.
  • Yang, Z., and Bisson L. F.. 1996. The SKS1 protein kinase is a multicopy suppressor of the snf3 mutation of Saccharomyces cerevisiae. Yeast 12:1407–1419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.