132
Views
195
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

The PWWP Domain of Dnmt3a and Dnmt3b Is Required for Directing DNA Methylation to the Major Satellite Repeats at Pericentric Heterochromatin

, &
Pages 9048-9058 | Received 05 May 2004, Accepted 29 Jun 2004, Published online: 27 Mar 2023

REFERENCES

  • Aoki, A., Suetake I., Miyagawa J., Fujio T., Chijiwa T., Sasaki H., and Tajima S.. 2001. Enzymatic properties of de novo-type mouse DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 29:3506–3512.
  • Bachman, K. E., Rountree M. R., and Baylin S. B.. 2001. Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J. Biol. Chem. 276:32282–32287.
  • Bird, A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16:6–21.
  • Chen, T., Boisvert F. M., Bazett-Jones D. P., and Richard S.. 1999. A role for the GSG domain in localizing Sam68 to novel nuclear structures in cancer cell lines. Mol. Biol. Cell 10:3015–3033.
  • Chen, T., and Li E.. 2004. Structure and function of eukaryotic DNA methyltransferases. Curr. Top. Dev. Biol. 60:55–89.
  • Chen, T., Ueda Y., Dodge J. E., Wang Z., and Li E.. 2003. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell. Biol. 23:5594–5605.
  • Chen, T., Ueda Y., Xie S., and Li E.. 2002. A novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its expression correlates with active de novo methylation. J. Biol. Chem. 277:38746–38754.
  • Chuang, L. S., Ian H. I., Koh T. W., Ng H. H., Xu G., and Li B. F.. 1997. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277:1996–2000.
  • Dennis, K., Fan T., Geiman T., Yan Q., and Muegge K.. 2001. Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev. 15:2940–2944.
  • Dodge, J., Ramsahoye B. H., Wo Z. G., Okano M., and Li E.. 2002. De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation. Gene 289:41–48.
  • Eden, A., Gaudet F., Waghmare A., and Jaenisch R.. 2003. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455.
  • Ehrlich, M. 2003. The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin. Immunol. 109:17–28.
  • Fuks, F., Burgers W. A., Godin N., Kasai M., and Kouzarides T.. 2001. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J. 20:2536–2544.
  • Gaudet, F., Hodgson J. G., Eden A., Jackson-Grusby L., Dausman J., Gray J. W., Leonhardt H., and Jaenisch R.. 2003. Induction of tumors in mice by genomic hypomethylation. Science 300:489–492.
  • Hansen, R. S., Wijmenga C., Luo P., Stanek A. M., Canfield T. K., Weemaes C. M., and Gartler S. M.. 1999. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl. Acad. Sci. USA 96:14412–14417.
  • Hata, K., Okano M., Lei H., and Li E.. 2002. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129:1983–1993.
  • Izumoto, Y., Kuroda T., Harada H., Kishimoto T., and Nakamura H.. 1997. Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus. Biochem. Biophys. Res. Commun. 238:26–32.
  • Jeanpierre, M., Turleau C., Aurias A., Prieur M., Ledeist F., Fischer A., and Viegas-Pequignot E.. 1993. An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum. Mol. Genet. 2:731–735.
  • Jones, P. A., and Baylin S. B.. 2002. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3:415–428.
  • Lehnertz, B., Ueda Y., Derijck A. A., Braunschweig U., Perez-Burgos L., Kubicek S., Chen T., Li E., Jenuwein T., and Peters A. H.. 2003. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13:1192–1200.
  • Lei, H., Oh S. P., Okano M., Juttermann R., Goss K. A., Jaenisch R., and Li E.. 1996. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122:3195–3205.
  • Leonhardt, H., Page A. W., Weier H.-U., and Bestor T. H.. 1992. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71:865–873.
  • Li, E. 2002. Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3:662–673.
  • Li, E., Bestor T. H., and Jaenisch R.. 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926.
  • Liang, G., Chan M. F., Tomigahara Y., Tsai Y. C., Gonzales F. A., Li E., Laird P. W., and Jones P. A.. 2002. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol. Cell. Biol. 22:480–491.
  • Maurer-Stroh, S., Dickens N. J., Hughes-Davies L., Kouzarides T., Eisenhaber F., and Ponting C. P.. 2003. The Tudor domain ‘royal family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem. Sci. 28:69–74.
  • Miyaki, M., Konishi M., Tanaka K., Kikuchi-Yanoshita R., Muraoka M., Yasuno M., Igari T., Koike M., Chiba M., and Mori T.. 1997. Germline mutation of MSH6 as the cause of hereditary nonpoliposis colorectal cancer. Nat. Genet. 17:271–272.
  • Okano, M., Bell D. W., Haber D. A., and Li E.. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257.
  • Okano, M., Xie S., and Li E.. 1998. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 19:219–220.
  • Pradhan, S., Bacolla A., Wells R. D., and Roberts R. J.. 1999. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem. 274:33002–33010.
  • Qiu, C., Sawada K., Zhang X., and Cheng X.. 2002. The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat. Struct. Biol. 9:217–224.
  • Shirohzu, H., Kubota T., Kumazawa A., Sado T., Chijiwa T., Inagaki K., Suetake I., Tajima S., Wakui K., Miki Y., Hayashi M., Fukushima Y., and Sasaki H.. 2002. Three novel DNMT3B mutations in Japanese patients with ICF syndrome. Am. J. Med. Genet. 112:31–37.
  • Slater, L. M., Allen M. D., and Bycroft M.. 2003. Structural variation in PWWP domains. J. Mol. Biol. 330:571–576.
  • Stec, I., Nagl S. B., van Ommen G. J., and den Dunnen J. T.. 2000. The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett. 473:1–5.
  • Stec, I., Wright T. J., van Ommen G. J., de Boer P. A., van Haeringen A., Moorman A. F., Altherr M. R., and den Dunnen J. T.. 1998. WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4; 14) multiple myeloma. Hum. Mol. Genet 7:1071–1082.
  • Visser, R., and Matsumoto N.. 2003. Genetics of Sotos syndrome. Curr. Opin. Pediatr. 15:598–606.
  • Wijmenga, C., Hansen R. S., Gimelli G., Bjorck E. J., Davies E. G., Valentine D., Belohradsky B. H., van Dongen J. J., Smeets D. F., van den Heuvel L. P., Luyten J. A., Strengman E., Weemaes C., and Pearson P. L.. 2000. Genetic variation in ICF syndrome: evidence for genetic heterogeneity. Hum. Mutat. 16:509–517.
  • Xie, S., Wang Z., Okano M., Nogami M., Li Y., He W. W., Okumura K., and Li E.. 1999. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene 236:87–95.
  • Xu, G. L., Bestor T. H., Bourc'his D., Hsieh C. L., Tommerup N., Bugge M., Hulten M., Qu X., Russo J. J., and Viegas-Pequignot E.. 1999. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402:187–191.
  • Yan, Q., Cho E., Lockett S., and Muegge K.. 2003. Association of Lsh, a regulator of DNA methylation, with pericentromeric heterochromatin is dependent on intact heterochromatin. Mol. Cell. Biol. 23:8416–8428.
  • Yoder, J. A., Soman N. S., Verdine G. L., and Bestor T. H.. 1997. DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J. Mol. Biol. 270:385–395.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.