26
Views
61
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Comparison of ABF1 and RAP1 in Chromatin Opening and Transactivator Potentiation in the Budding Yeast Saccharomyces cerevisiae

, , &
Pages 9152-9164 | Received 22 Jun 2004, Accepted 28 Jul 2004, Published online: 27 Mar 2023

REFERENCES

  • Barbaric, S., Munsterkotter M., Goding C., and Horz W.. 1998. Cooperative Pho2-Pho4 interactions at the PHO5 promoter are critical for binding of Pho4 to UASp1 and for efficient transactivation by Pho4 at UASp2. Mol. Cell. Biol. 18:2629–2639.
  • Bodmer-Glavas, M., Edler K., and Barberis A.. 2001. RNA polymerase II and III transcription factors can stimulate DNA replication by modifying origin chromatin structures. Nucleic Acids Res. 29:4570–4580.
  • Chasman, D. I., Lue N. F., Buchman A. R., LaPointe J. W., Lorch Y., and Kornberg R. D.. 1990. A yeast protein that influences the chromatin structure of UASG and functions as a powerful auxiliary gene activator. Genes Dev. 4:503–514.
  • Devlin, C., Tice-Baldwin K., Shore D., and Arndt K. T.. 1991. RAP1 is required for BAS1/BAS2- and GCN4-dependent transcription of the yeast HIS4 gene. Mol. Cell. Biol. 11:3642–3651.
  • Diffley, J. F., and Stillman B.. 1989. Similarity between the transcriptional silencer binding proteins ABF1 and RAP1. Science 246:1034–1038.
  • Fourel, G., Miyake T., Defossez P. A., Li R., and Gilson E.. 2002. General regulatory factors (GRFs) as genome partitioners. J. Biol. Chem. 277:41736–41743.
  • Gartenberg, M. R. 2000. The Sir proteins of Saccharomyces cerevisiae: mediators of transcriptional silencing and much more. Curr. Opin. Microbiol. 3:132–137.
  • Goncalves, P. M., Griffioen G., Minnee R., Bosma M., Kraakman L. S., Mager W. H., and Planta R. J.. 1995. Transcription activation of yeast ribosomal protein genes requires additional elements apart from binding sites for Abf1p or Rap1p. Nucleic Acids Res. 23:1475–1480.
  • Goncalves, P. M., Maurer K., van Nieuw Amerongen G., Bergkamp-Steffens K., Mager W. H., and Planta R. J.. 1996. C-terminal domains of general regulatory factors Abf1p and Rap1p in Saccharomyces cerevisiae display functional similarity. Mol. Microbiol. 19:535–543.
  • Graham, I. R., Haw R. A., Spink K. G., Halden K. A., and Chambers A.. 1999. In vivo analysis of functional regions within yeast Rap1p. Mol. Cell. Biol. 19:7481–7490.
  • Grunstein, M. 1997. Molecular model for telomeric heterochromatin in yeast. Curr. Opin. Cell Biol. 9:383–387.
  • Halfter, H., Kavety B., Vandekerckhove J., Kiefer F., and Gallwitz D.. 1989. Sequence, expression and mutational analysis of BAF1, a transcriptional activator and ARS1-binding protein of the yeast Saccharomyces cerevisiae. EMBO J. 8:4265–4272.
  • Hardy, C. F. J., Sussel L., and Shore D.. 1992. Dissection of a carboxyl-terminal region of the yeast regulatory protein RAP1 with effects on both transcriptional activation and silencing. Mol. Cell. Biol. 12:1209–1217.
  • Higuchi, R., Krummel B., and Saiki R. K.. 1988. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16:7351–7367.
  • Hill, J., Donald K. A., Griffiths D. E., and Donald G.. 1991. DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res. 19:5791. (Erratum, 19:6688.)
  • Hu, Y. F., Hao Z. L., and Li R.. 1999. Chromatin remodeling and activation of chromosomal DNA replication by an acidic transcriptional activation domain from BRCA1. Genes Dev. 13:637–642.
  • Kent, N. A., Bird L. E., and Mellor J.. 1993. Chromatin analysis in yeast using NP-40 permeabilised sphaeroplasts. Nucleic Acids Res. 21:4653–4654.
  • Kurtz, S., and Shore D.. 1991. RAP1 protein activates and silences transcription of mating-type genes in yeast. Genes Dev. 5:616–628.
  • Lascaris, R. F., Groot E., Hoen P. B., Mager W. H., and Planta R. J.. 2000. Different roles for Abf1p and a T-rich promoter element in nucleosome organization of the yeast RPS28A gene. Nucleic Acids Res. 28:1390–1396.
  • Li, R., Yu D. S., Tanaka M., Zheng L., Berger S. L., and Stillman B.. 1998. Activation of chromosomal DNA replication in Saccharomyces cerevisiae by acidic transcriptional activation domains. Mol. Cell. Biol. 18:1296–1302.
  • Lieb, J. D., Liu X., Botstein D., and Brown P. O.. 2001. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat. Genet. 28:327–334.
  • Marahrens, Y., and Stillman B.. 1992. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255:817–823.
  • Martens, J. A., and Brandl C. J.. 1994. GCN4p activation of the yeast TRP3 gene is enhanced by ABF1p and uses a suboptimal TATA element. J. Biol. Chem. 269:15661–15667.
  • Mencia, M., Moqtaderi Z., Geisberg J. V., Kuras L., and Struhl K.. 2002. Activator-specific recruitment of TFIID and regulation of ribosomal protein genes in yeast. Mol. Cell 9:823–833.
  • Miller, J. A., and Widom J.. 2003. Collaborative competition mechanism for gene activation in vivo. Mol. Cell. Biol. 23:1623–1632.
  • Miyake, T., Loch C. M., and Li R.. 2002. Identification of a multifunctional domain in autonomously replicating sequence-binding factor 1 required for transcriptional activation, DNA replication, and gene silencing. Mol. Cell. Biol. 22:505–516.
  • Morse, R. H. 2003. Getting into chromatin: how do transcription factors get past the histones? Biochem. Cell Biol. 81:101–112.
  • Morse, R. H. 1993. Nucleosome disruption by transcription factor binding in yeast. Science 262:1563–1566.
  • Morse, R. H. 2000. RAP, RAP, open up! New wrinkles for RAP1 in yeast. Trends Genet. 16:51–53.
  • Morse, R. H., Roth S. Y., and Simpson R. T.. 1992. A transcriptionally active tRNA gene interferes with nucleosome positioning in vivo. Mol. Cell. Biol. 12:4015–4025.
  • Pal, S., Cantor A. B., Johnson K. D., Moran T. B., Boyer M. E., Orkin S. H., and Bresnick E. H.. 2004. Coregulator-dependent facilitation of chromatin occupancy by GATA-1. Proc. Natl. Acad. Sci. USA 101:980–985.
  • Pilpel, Y., Sudarsanam P., and Church G. M.. 2001. Identifying regulatory networks by combinatorial analysis of promoter elements. Nat. Genet. 29:153–159.
  • Pina, B., Fernandez-Larrea J., Garcia-Reyero N., and Idrissi F. Z.. 2003. The different (sur)faces of Rap1p. Mol. Genet. Genomics 268:791–798.
  • Polach, K. J., and Widom J.. 1995. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254:130–149.
  • Pryde, F. E., and Louis E. J.. 1999. Limitations of silencing at native yeast telomeres. EMBO J. 18:2538–2550.
  • Reed, S. H., Akiyama M., Stillman B., and Friedberg E. C.. 1999. Yeast autonomously replicating sequence binding factor is involved in nucleotide excision repair. Genes Dev. 13:3052–3058.
  • Reid, J. L., Iyer V. R., Brown P. O., and Struhl K.. 2000. Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. Mol. Cell 6:1297–1307.
  • Rhode, P. R., Elsasser S., and Campbell J. L.. 1992. Role of multifunctional autonomously replicating sequence binding factor 1 in the initiation of DNA replication and transcriptional control in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:1064–1077.
  • Rhode, P. R., Sweder K. S., Oegema K. F., and Campbell J. L.. 1989. The gene encoding ARS-binding factor I is essential for the viability of yeast. Genes Dev. 3:1926–1939.
  • Rolfes, R. J., Zhang F., and Hinnebusch A. G.. 1997. The transcriptional activators BAS1, BAS2, and ABF1 bind positive regulatory sites as the critical elements for adenine regulation of ADE5,7. J. Biol. Chem. 272:13343–13354.
  • Ryan, M. P., Jones R., and Morse R. H.. 1998. SWI-SNF complex participation in transcriptional activation at a step subsequent to activator binding. Mol. Cell. Biol. 18:1774–1782.
  • Ryan, M. P., Stafford G. A., Yu L., and Morse R. H.. 2000. Artificially recruited TATA-binding protein fails to remodel chromatin and does not activate three promoters that require chromatin remodeling. Mol. Cell. Biol. 20:5847–5857.
  • Sabet, N., Tong F., Madigan J. P., Volo S., Smith M. M., and Morse R. H.. 2003. Global and specific transcriptional repression by the histone H3 amino terminus in yeast. Proc. Natl. Acad. Sci. USA 100:4084–4089.
  • Schroeder, S. C., and Weil P. A.. 1998. Genetic tests of the role of Abf1p in driving transcription of the yeast TATA box binding protein-encoding gene, SPT15. J. Biol. Chem. 273:19884–19891.
  • Shore, D. 1994. RAP1: a protean regulator in yeast. Trends Genet. 10:408–412.
  • Simpson, R. T. 1991. Nucleosome positioning: occurrence, mechanisms, and functional consequences. Prog. Nucleic Acid Res. Mol. Biol. 40:143–184.
  • Springer, C., Krappmann S., Kunzler M., Zmasek C., and Braus G. H.. 1997. Regulation of the yeast HIS7 gene by the global transcription factor Abf1p. Mol. Gen. Genet. 256:136–146.
  • Springer, C., Kunzler M., Balmelli T., and Braus G. H.. 1996. Amino acid and adenine cross-pathway regulation act through the same 5′-TGACTC-3′ motif in the yeast HIS7 promoter. J. Biol. Chem. 271:29637–29643.
  • Stafford, G. A., and Morse R. H.. 1997. Chromatin remodeling by transcriptional activation domains in a yeast episome. J. Biol. Chem. 272:11526–11534.
  • Strahl-Bolsinger, S., Hecht A., Luo K., and Grunstein M.. 1997. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11:83–93.
  • Thoma, F. 1992. Nucleosome positioning. Biochim. Biophys. Acta 1130:1–19.
  • Thoma, F., Bergman L. W., and Simpson R. T.. 1984. Nuclease digestion of circular TRP1ARS1 chromatin reveals positioned nucleosomes separated by nuclease-sensitive regions. J. Mol. Biol. 177:715–733.
  • Valerius, O., Brendel C., Wagner C., Krappmann S., Thoma F., and Braus G. H.. 2003. Nucleosome position-dependent and -independent activation of HIS7 expression in Saccharomyces cerevisiae by different transcriptional activators. Eukaryot. Cell 2:876–885.
  • Venditti, P., Costanzo G., Negri R., and Camilloni G.. 1994. ABFI contributes to the chromatin organization of Saccharomyces cerevisiae ARS1 B-domain. Biochim. Biophys. Acta 1219:677–689.
  • Wang, Y., Liu C. L., Storey J. D., Tibshirani R. J., Herschlag D., and Brown P. O.. 2002. Precision and functional specificity in mRNA decay. Proc. Natl. Acad. Sci. USA 99:5860–5865.
  • Wiltshire, S., Raychaudhuri S., and Eisenberg S.. 1997. An Abf1p C-terminal region lacking transcriptional activation potential stimulates a yeast origin of replication. Nucleic Acids Res. 25:4250–4256.
  • Winston, F., Dollard C., and Ricupero-Hovasse S. L.. 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55.
  • Yu, L., and Morse R. H.. 1999. Chromatin opening and transactivator potentiation by RAP1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:5279–5288.
  • Yu, L., Sabet N., Chambers A., and Morse R. H.. 2001. The N-terminal and C-terminal domains of RAP1 are dispensable for chromatin opening and GCN4-mediated HIS4 activation in budding yeast. J. Biol. Chem. 276:33257–33264.
  • Yu, Q., Qiu R., Foland T. B., Griesen D., Galloway C. S., Chiu Y. H., Sandmeier J., Broach J. R., and Bi X.. 2003. Rap1p and other transcriptional regulators can function in defining distinct domains of gene expression. Nucleic Acids Res. 31:1224–1233.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.