17
Views
47
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Persistent Activation by Constitutive Ste7 Promotes Kss1-Mediated Invasive Growth but Fails To Support Fus3-Dependent Mating in Yeast

, , , , &
Pages 9221-9238 | Received 22 Oct 2003, Accepted 26 Jul 2004, Published online: 27 Mar 2023

REFERENCES

  • Andersson, J., Simpson D. M., Qi M., Wang Y., and Elion E. A.. 2004. Differential input by Ste5 scaffold and Msg5 phosphatase route a MAPK cascade to multiple outcomes. EMBO J. 23:2564–2576.
  • Baldari, C., Murray J. A., Ghiara P., Cesareni G., and Galeotti C. L.. 1987. A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1 beta in Saccharomyces cerevisiae. EMBO J. 6:229–234.
  • Bardwell, A. J., Flatauer L. J., Matsukuma K., Thorner J., and Bardwell L.. 2001. A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. J. Biol. Chem. 276:10374–10386.
  • Bardwell, L., Cook J. G., Chang E. C., Cairns B. R., and Thorner J.. 1996. Signaling in the yeast pheromone response pathway: specific and high-affinity interaction of the mitogen-activated protein (MAP) kinases Kss1 and Fus3 with the upstream MAP kinase kinase Ste7. Mol. Cell. Biol. 16:3637–3650.
  • Bardwell, L., Cook J. G., Depak V., Baggott D. M., Martinez A. R., and Thorner J.. 1998. Repression of yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK. Genes Dev. 12:2887–2898.
  • Baur, M., Esch R. K., and Errede B.. 1997. Cooperative binding interactions required for function of the Ty1 sterile responsive element. Mol. Cell. Biol. 17:4330–4337.
  • Breitkreutz, A., Boucher L., and Tyers M.. 2001. MAPK specificity in the yeast pheromone response independent of transcriptional activation. Curr. Biol. 11:1266–1271.
  • Choi, K. Y., Satterberg B., Lyons D. M., and Elion E. A.. 1994. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78:499–512.
  • Cook, J. G., Bardwell L., Kron S. J., and Thorner J.. 1996. Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev. 10:2831–2848.
  • Cook, J. G., Bardwell L., and Thorner J.. 1997. Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature 390:85–88.
  • Davenport, K. D., Williams K. E., Ullmann B. D., and Gustin M. C.. 1999. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants. Genetics 153:1091–1103.
  • Dohlman, H. G., and Thorner J. W.. 2001. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu. Rev. Biochem. 70:703–754.
  • Doi, K., Gartner A., Ammerer G., Errede B., Shinkawa H., Sugimoto K., and Matsumoto K.. 1994. MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae. EMBO J. 13:61–70.
  • Dolan, J. W., Kirkman C., and Fields S.. 1989. The yeast STE12 protein binds to the DNA sequence mediating pheromone induction. Proc. Natl. Acad. Sci. USA 86:5703–5707.
  • Duvel, K., Santhanam A., Garrett S., Schneper L., and Broach J. R.. 2003. Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast. Mol. Cell 11:1467–1478.
  • Elion, E. A., Grisafi P. L., and Fink G. R.. 1990. FUS3 encodes a cdc2+/CDC28-related kinase required for the transition from mitosis into conjugation. Cell 60:649–664.
  • Elion, E. A., Satterberg B., and Kranz J. E.. 1993. FUS3 phosphorylates multiple components of the mating signal transduction cascade: evidence for STE12 and FAR1. Mol. Biol. Cell 4:495–510.
  • Errede, B., and Ammerer G.. 1989. STE12, a protein involved in cell-type-specific transcription and signal transduction in yeast, is part of protein-DNA complexes. Genes Dev. 3:1349–1361.
  • Errede, B., Gartner A., Zhou Z., Nasmyth K., and Ammerer G.. 1993. MAP kinase-related FUS3 from S. cerevisiae is activated by STE7 in vitro. Nature 362:261–264.
  • Errede, B., and Ge Q. Y.. 1996. Feedback regulation of MAP kinase signal pathways. Philos. Trans. R. Soc. London B 351:143–148.
  • Esch, R. K., and Errede B.. 2002. Pheromone induction promotes Ste11 degradation through a MAPK feedback and ubiquitin-dependent mechanism. Proc. Natl. Acad. Sci. USA 99:9160–9165.
  • Evan, G. I., Lewis G. K., Ramsay G., and Bishop J. M.. 1985. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5:3610–3616.
  • Farley, F. W., Satterberg B., Goldsmith E. J., and Elion E. A.. 1999. Relative dependence of different outputs of the Saccharomyces cerevisiae pheromone response pathway on the MAP kinase Fus3p. Genetics 151:1425–1444.
  • Gartner, A., Nasmyth K., and Ammerer G.. 1992. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev. 6:1280–1292.
  • Gietz, R. D., Schiestl R. H., Willems A. R., and Woods R. A.. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS- DNA/PEG procedure. Yeast 11:355–360.
  • Gietz, R. D., and Sugino A.. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534.
  • Gimeno, C. J., Ljungdahl P. O., Styles C. A., and Fink G. R.. 1992. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090.
  • Guarente, L., Lalonde B., Gifford P., and Alani E.. 1984. Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae. Cell 36:503–511.
  • Guarente, L., and Ptashne M.. 1981. Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78:2199–2203.
  • Laloux, I., Jacobs E., and Dubois E.. 1994. Involvement of SRE element of Ty1 transposon in TEC1-dependent transcriptional activation. Nucleic Acids Res. 22:999–1005.
  • Madhani, H. D., and Fink G. R.. 1997. Combinatorial control required for the specificity of yeast MAPK signaling. Science 275:1314–1317.
  • Madhani, H. D., Styles C. A., and Fink G. R.. 1997. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91:673–684.
  • Mitchell, D. A., Marshall T. K., and Deschenes R. J.. 1993. Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast 9:715–722.
  • Mosch, H. U., Roberts R. L., and Fink G. R.. 1996. Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93:5352–5356.
  • Neiman, A. M., and Herskowitz I.. 1994. Reconstitution of a yeast protein kinase cascade in vitro: activation of the yeast MEK homologue STE7 by STE11. Proc. Natl. Acad. Sci. USA 91:3398–3402.
  • O'Rourke, S. M., and Herskowitz I.. 1998. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev. 12:2874–2886.
  • Palecek, S. P., Parikh A. S., and Kron S. J.. 2002. Sensing, signalling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth. Microbiology 148:893–907.
  • Park, S. H., Zarrinpar A., and Lim W. A.. 2003. Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299:1061–1064.
  • Rhodes, N., Company M., and Errede B.. 1990. A yeast-Escherichia coli shuttle vector containing the M13 origin of replication. Plasmid 23:159–162.
  • Rhodes, N., Connell L., and Errede B.. 1990. STE11 is a protein kinase required for cell-type-specific transcription and signal transduction in yeast. Genes Dev. 4:1862–1874.
  • Roberts, C. J., Nelson B., Marton M. J., Stoughton R., Meyer M. R., Bennett H. A., He Y. D., Dai H., Walker W. L., Hughes T. R., Tyers M., Boone C., and Friend S. H.. 2000. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287:873–880.
  • Roberts, R. L., and Fink G. R.. 1994. Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 8:2974–2985.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Sabbagh, W., Jr., Flatauer L. J., Bardwell A. J., and Bardwell L.. 2001. Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation. Mol. Cell 8:683–691.
  • Sambrook, J., Fritsch E. F., and Maniatis T.. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Sherman, F., Fink G. R., and Hicks J. B.. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Sieburth, D. S., Sundaram M., Howard R. M., and Han M.. 1999. A PP2A regulatory subunit positively regulates Ras-mediated signaling durin Caenorhabditis elegans vulval induction. Genes Dev. 13:2562–2569.
  • Sikorski, R. S., and Hieter P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Smith, D. B., and Johnson K. S.. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40.
  • Sprague, G. F., Jr. 1991. Assay of yeast mating reaction. Methods Enzymol. 194:77–93.
  • Tedford, K., Kim S., Sa D., Stevens K., and Tyers M.. 1997. Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr. Biol. 7:228–238.
  • van Drogen, F., O'Rourke S. M., Stucke V. M., Jaquenoud M., Neiman A. M., and Peter M.. 2000. Phosphorylation of the MEKK Ste11p by the PAK-like kinase Ste20p is required for MAP kinase signaling in vivo. Curr. Biol. 10:630–639.
  • Wang, H., Wang X., and Jiang Y.. 2003. Interaction with Tap42 is required for the essential function of Sit4 and type 2A phosphatases. Mol. Biol. Cell 14:4342–4351.
  • Wang, Y., and Dohlman H. G.. 2002. Pheromone-dependent ubiquitination of the mitogen-activated protein kinase kinase Ste7. J. Biol. Chem. 277:15766–15772.
  • Wang, Y., Ge Q., Houston D., Thorner J., Errede B., and Dohlman H. G.. 2003. Regulation of Ste7 ubiquitination by Ste11 phosphorylation and the SCF (Skp1/Cullin/F-box) complex. J. Biol. Chem. 278:22284–22289.
  • Wassarman, D. A., Solomon N. M., Chang H. C., Karim F. D., Therrien M., and Rubin G. M.. 1996. Protein phosphatase 2A positively and negatively regulates Ras1-mediated photoreceptor development in Drosophila. Genes Dev. 10:272–278.
  • Zeitlinger, J., Simon I., Harbison C. T., Hannett N. M., Volkert T. L., Fink G. R., and Young R. A.. 2003. Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113:395–404.
  • Zhan, X. L., Deschenes R. J., and Guan K. L.. 1997. Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae. Genes Dev. 11:1690–1702.
  • Zheng, C. F., and Guan K. L.. 1994. Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J. 13:1123–1131.
  • Zhou, Z. 1993. Mating pheromone induced signal transduction in Saccharomyces cerevisiae: characterization of the Ste7 kinase. Ph.D. dissertation. University of North Carolina at Chapel Hill, Chapel Hill.
  • Zhou, Z., Gartner A., Cade R., Ammerer G., and Errede B.. 1993. Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases. Mol. Cell. Biol. 13:2069–2080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.