12
Views
31
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Cofilin 1 Is Revealed as an Inhibitor of Glucocorticoid Receptor by Analysis of Hormone-Resistant Cells

, , &
Pages 9371-9382 | Received 07 Apr 2004, Accepted 26 Jul 2004, Published online: 27 Mar 2023

REFERENCES

  • Abel, A., Wochnik G., Rüegg J., Rouyer A., Holsboer F., and Rein T.. 2002. Activity of the glucocorticoid receptor in G2 and mitosis. Mol. Endocrinol. 16:1352–1366.
  • Bamburg, J. R., and Wiggan O. P.. 2002. ADF/cofilin and actin dynamics in disease. Trends Cell Biol. 12:598–605.
  • Beato, M., Herrlich P., and Schütz G.. 1995. Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857.
  • Bonovich, M. T., List H. J., Zhang S., Danielsen M., and Riegel A. T.. 1998. Identification of glucocorticoid receptor domains necessary for transcriptional activation of the mouse mammary tumor virus promoter integrated in the genome. Exp. Cell Res. 239:454–462.
  • Brinkmann, A. O. 1994. Steroid hormone receptors: activators of gene transcription. J. Pediatr. Endocrinol. 7:275–282.
  • Carlier, M. F. 1998. Control of actin dynamics. Curr. Opin. Cell Biol. 10:45–51.
  • De Kloet, E. R., Oitzl M. S., and Joels M.. 1993. Functional implications of brain corticosteroid receptor diversity. Cell. Mol. Neurobiol. 13:433–455.
  • De Martino, M. U., Bhattachryya N., Alesci S., Ichijo T., Chrousos G. P., and Kino T.. 2004. The glucocorticoid receptor (GR) and the orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) interact with and mutually affect each other's transcriptional activities: implications for intermediary metabolism. Mol. Endocrinol. 18:820–833.
  • DeRijk, R., and Sternberg E. M.. 1997. Corticosteroid resistance and disease. Ann. Med. 29:79–82.
  • Dos Remedios, C., Chhabra D., Kekic M., Dedova I. V., Tsubakihara M., Berry D. A., and Nosworthy N. J.. 2003. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol. Rev. 83:433–473.
  • Evans-Storms, R. B., and Cidlowski J. A.. 1995. Regulation of apoptosis by steroid hormones. J. Steroid Biochem. Mol. Biol. 53:1–8.
  • Feldker, D. E., Datson N. A., Veenema A. H., Meulmeester E., De Kloet E. R., and Vreugdenhil E.. 2003. Serial analysis of gene expression predicts structural differences in hippocampus of long attack latency and short attack latency mice. Eur. J. Neurosci. 17:379–387.
  • Galigniana, M. D., Scruggs J. L., Herrington J., Welsh M. J., Carter-Su C., Housley P. R., and Pratt W. B.. 1998. Heat shock protein 90-dependent (geldanamycin-inhibited) movement of the glucocorticoid receptor through the cytoplasm to the nucleus requires intact cytoskeleton. Mol. Endocrinol. 12:1903–1913.
  • Göttlicher, M., Heck S., Doucas V., Wade E., Kullmann M., Cato A. C., Evans R. M., and Herrlich P.. 1996. Interaction of the Ubc9 human homologue with c-Jun and with the glucocorticoid receptor. Steroids 61:257–262.
  • Grove, J. R., Dieckmann B. S., Schroer T. A., and Ringold G. M.. 1980. Isolation of glucocorticoid-unresponsive rat hepatoma cells by fluorescence-activated cell sorting. Cell 21:47–56.
  • Harrison, R. W., Lippman S. S., and VerHoeven R.. 1995. Selection of glucocorticoid-resistant mutations from an AtT-20 cell line containing a glucocorticoid-regulated selectable transgene. Biochem. Biophys. Res. Commun. 209:18–24.
  • Herr, A., Wochnik G. M., Rosenhagen M. C., Holsboer F., and Rein T.. 2000. Rifampicin is not an activator of the glucocorticoid receptor. Mol. Pharmacol. 57:732–737.
  • Hittelman, A. B., Burakov D., Iñiguez-Lluh J. A., Freedman L. P., and Garabedian M. J.. 1999. Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins. EMBO J. 18:5380–5388.
  • Hollenberg, S. M., and Evans R. M.. 1988. Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell 55:899–906.
  • Hong, H., Kohli K., Trivedi A., Johnson D. L., and Stallcup M. R.. 1996. GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc. Natl. Acad. Sci. USA 93:4948–4952.
  • Hulkko, S. M., Wakui H., and Zilliacus J.. 2000. The pro-apoptotic protein death-associated protein 3 (DAP3) interacts with the glucocorticoid receptor and affects the receptor function. Biochem. J. 349:885–893.
  • Hutchison, K. A., Dittmar K. D., Czar M. J., and Pratt W. B.. 1994. Proof that hsp70 is required for assembly of the glucocorticoid receptor into a heterocomplex with hsp90. J. Biol. Chem. 269:5043–5049.
  • Iida, K., Matsumoto S., and Yahara I.. 1992. The KKRKK sequence is involved in heat shock-induced nuclear translocation of the 18-kDa actin-binding protein, cofilin. Cell Struct. Funct. 17:39–46.
  • Jonat, C., Rahmsdorf H. J., Park K. K., Cato A. C., Gebel S., Ponta H., and Herrlich P.. 1990. Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62:1189–1204.
  • Karin, M. 1998. New twists in gene regulation by glucocorticoid receptor: is DNA binding dispensable? Cell 93:487–490.
  • Karin, M., Haslinger A., Heguy A., Dietlin T., and Imbra R.. 1987. Transcriptional control mechanisms which regulate the expression of human metallothionein genes. Experientia Suppl. 52:401–405.
  • Lee, H. L., and Archer T. K.. 1998. Prolonged glucocorticoid exposure dephosphorylates histone H1 and inactivates the MMTV promoter. EMBO J. 17:1454–1466.
  • Lee, S., Duncan K. A., Chou H., Chen D., Kohli K., Huang C. F., and Stallcup M. R.. 1995. A somatic cell genetic method for identification of untargeted mutations in the glucocorticoid receptor that cause hormone binding deficiencies. Mol. Endocrinol. 9:826–837.
  • Li, X., Commane M., Burns C., Vithalani K., Cao Z., and Stark G. R.. 1999. Mutant cells that do not respond to interleukin-1 (IL-1) reveal a novel role for IL-1 receptor-associated kinase. Mol. Cell. Biol. 19:4643–4652.
  • Liu, J., and DeFranco D. B.. 1999. Chromatin recycling of glucocorticoid receptors: implications for multiple roles of heat shock protein 90. Mol. Endocrinol. 13:355–365.
  • Makino, Y., Okamoto K., Yoshikawa N., Aoshima M., Hirota K., Yodoi J., Umesono K., Makino I., and Tanaka H.. 1996. Thioredoxin: a redox-regulating cellular cofactor for glucocorticoid hormone action. Cross talk between endocrine control of stress response and cellular antioxidant defense system. J. Clin. Investig. 98:2469–2477.
  • McGough, A., Pope B., Chiu W., and Weeds A.. 1997. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 138:771–781.
  • McKendry, R., John J., Flavell D., Muller M., Kerr I. M., and Stark G. R.. 1991. High-frequency mutagenesis of human cells and characterization of a mutant unresponsive to both alpha and gamma interferons. Proc. Natl. Acad. Sci. USA 88:11455–11459.
  • Miyata, Y., and Yahara I.. 1991. Cytoplasmic 8 S glucocorticoid receptor binds to actin filaments through the 90-kDa heat shock protein moiety. J. Biol. Chem. 266:8779–8783.
  • Moon, A., and Drubin D. G.. 1995. The ADF/cofilin proteins: stimulus-responsive modulators of actin dynamics. Mol. Biol. Cell 6:1423–1431.
  • Moriyama, K., Iida K., and Yahara I.. 1996. Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1:73–86.
  • Nebl, G., Meuer S. C., and Samstag Y.. 1996. Dephosphorylation of serine 3 regulates nuclear translocation of cofilin. J. Biol. Chem. 271:26276–26280.
  • Nishida, E., Maekawa S., and Sakai H.. 1984. Cofilin, a protein in porcine brain that binds to actin filaments and inhibits their interactions with myosin and tropomyosin. Biochemistry 23:5307–5313.
  • Oren, A., Herschkovitz A., Ben-Dror I., Holdengreber V., Ben-Shaul Y., Seger R., and Vardimon L.. 1999. The cytoskeletal network controls c-Jun expression and glucocorticoid receptor transcriptional activity in an antagonistic and cell-type-specific manner. Mol. Cell. Biol. 19:1742–1750.
  • Pellegrini, S., John J., Shearer M., Kerr I. M., and Stark G. R.. 1989. Use of a selectable marker regulated by alpha interferon to obtain mutations in the signaling pathway. Mol. Cell. Biol. 9:4605–4612.
  • Posern, G., Sotiropoulos A., and Treisman R.. 2002. Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor. Mol. Biol. Cell 13:4167–4178.
  • Pratt, W. B., Silverstein A. M., and Galigniana M. D.. 1999. A model for the cytoplasmic trafficking of signalling proteins involving the hsp90-binding immunophilins and p50cdc37. Cell. Signal. 11:839–851.
  • Rabindran, S. K., Danielsen M., Firestone G. L., and Stallcup M. R.. 1987. Glucocorticoid-dependent maturation of viral proteins in mouse lymphoma cells: isolation of defective and hormone-independent cell variants. Somat. Cell Mol. Genet. 13:131–143.
  • Robyr, D., Wolffe A. P., and Wahli W.. 2000. Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol. Endocrinol. 14:329–347.
  • Schule, R., Rangarajan P., Kliewer S., Ransone L. J., Bolado J., Yang N., Verma I. M., and Evans R. M.. 1990. Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell 62:1217–1226.
  • Shibuya, T., and Morimoto K.. 1993. A review of the genotoxicity of 1-ethyl-1-nitrosourea. Mutat. Res. 297:3–38.
  • Sitcheran, R., Emter R., Kralli A., and Yamamoto K. R.. 2000. A genetic analysis of glucocorticoid receptor signaling. Identification and characterization of ligand-effect modulators in Saccharomyces cerevisiae. Genetics 156:963–972.
  • Smith, C. L., Htun H., Wolford R. G., and Hager G. L.. 1997. Differential activity of progesterone and glucocorticoid receptors on mouse mammary tumor virus templates differing in chromatin structure. J. Biol. Chem. 272:14227–14235.
  • Taft, S. A., Liber H. L., and Skopek T. R.. 1994. Mutational spectrum of ICR-191 at the hprt locus in human lymphoblastoid cells. Environ. Mol. Mutagen. 23:96–100.
  • Tang, Y., and DeFranco D. B.. 1996. ATP-dependent release of glucocorticoid receptors from the nuclear matrix. Mol. Cell. Biol. 16:1989–2001.
  • Vacchio, M. S., Ashwell J. D., and King L. B.. 1998. A positive role for thymus-derived steroids in formation of the T-cell repertoire. Ann. N. Y. Acad. Sci. 840:317–327.
  • van Oortmerssen, G. A., and Bakker T. C.. 1981. Artificial selection for short and long attack latencies in wild Mus musculus domesticus. Behav. Genet. 11:115–126.
  • Vartiainen, M. K., Mustonen T., Mattila P. K., Ojala P. J., Thesleff I., Partanen J., and Lappalainen P.. 2002. The three mouse actin-depolymerizing factor/cofilins evolved to fulfill cell-type-specific requirements for actin dynamics. Mol. Biol. Cell 13:183–194.
  • Veenema, A. H., Meijer O. C., De Kloet E. R., Koolhaas J. M., and Bohus B. G.. 2003. Differences in basal and stress-induced HPA regulation of wild house mice selected for high and low aggression. Horm. Behav. 43:197–204.
  • Wakui, H., Wright A. P., Gustafsson J., and Zilliacus J.. 1997. Interaction of the ligand-activated glucocorticoid receptor with the 14-3-3 eta protein. J. Biol. Chem. 272:8153–8156.
  • Wochnik, G. M., Young J. C., Schmidt U., Holsboer F., Hartl F. U., and Rein T.. 2004. Inhibition of GR-mediated transcription by p23 requires interaction with Hsp90. FEBS Lett. 560:35–38.
  • Yang, L., Guerrero J., Hong H., DeFranco D. B., and Stallcup M. R.. 2000. Interaction of the tau2 transcriptional activation domain of glucocorticoid receptor with a novel steroid receptor coactivator, hic-5, which localizes to both focal adhesions and the nuclear matrix. Mol. Biol. Cell 11:2007–2018.
  • Yang-Yen, H. F., Chambard J. C., Sun Y. L., Smeal T., Schmidt T. J., Drouin J., and Karin M.. 1990. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62:1205–1215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.