30
Views
56
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Carbonic Anhydrase III Is Not Required in the Mouse for Normal Growth, Development, and Life Span

, , , , , , , , , , & show all
Pages 9942-9947 | Received 04 Jun 2004, Accepted 19 Aug 2004, Published online: 27 Mar 2023

REFERENCES

  • Blackburn, M. N., Chirgwin J. M., James G. T., Kempe T. D., Parsons T., Register A. M., Schnackerz K. D., and Noltmann E. A.. 1972. Pseudoisoenzymes of rabbit muscle phosphoglucose isomerase. J. Biol. Chem. 247:1170–1179.
  • Cabiscol, E., and Levine R. L.. 1995. Carbonic anhydrase III. Oxidative modification in vivo and loss of phosphatase activity during aging. J. Biol. Chem. 270:14742–14747.
  • Carter, N. D. 1991. Hormonal and neuronal control of carbonic anhydrase III gene expression in skeletal muscle, p. 247–256. In Dodgson S. J., Tashian R. E., Gross G., and Carter N. D. (ed.), The carbonic anhydrases: cellular physiology and molecular genetics. Plenum Publishing Corp., New York, N.Y.
  • Chai, Y. C., Jung C.-H., Lii C.-K., Ashraf S. S., Hendrich S., Wolf B., Sies H., and Thomas J. A.. 1991. Identification of an abundant S-thiolated rat liver protein as carbonic anhydrase III. Characterization of S-thiolation and dethiolation reactions. Arch. Biochem. Biophys. 284:270–278.
  • Chomczynski, P., and Sacchi N.. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
  • Cote, C. H., Jomphe N., Odeimat A., and Fremont P.. 1994. Carbonic anhydrase in mouse skeletal muscle and its influence on contractility. Biochem. Cell Biol. 72:244–249.
  • Deng, C., Wynshaw-Boris A., Zhou F., Kuo A., and Leder P.. 1996. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84:911–921.
  • Frank, L., Bucher J. R., and Roberts R. J.. 1978. Oxygen toxicity in neonatal and adult animals of various species. J. Appl. Physiol. 45:699–704.
  • Geers, C., and Gros G.. 1990. Effects of carbonic anhydrase inhibitors on contraction, intracellular pH and energy-rich phosphates of rat skeletal muscle. J. Physiol. 423:279–297.
  • Hegde, P., Qi R., Abernathy K., Gay C., Dharap S., Gaspard R., Hughes J. E., Snesrud E., Lee N., and Quackenbush J.. 2000. A concise guide to cDNA microarray analysis. BioTechniques 29:548–556.
  • Kim, G., Lee T., Wynshaw-Boris A., and Levine R. L.. 2001. Nucleotide sequence and structure of the mouse carbonic anhydrase III gene. Gene 265:37–44.
  • Kim, G., Selengut J., and Levine R. L.. 2000. Carbonic anhydrase III: the phosphatase activity is extrinsic. Arch. Biochem. Biophys. 377:334–340.
  • Koester, M. K., Pullan L. M., and Noltmann E. A.. 1981. The p-nitrophenyl phosphatase activity of muscle carbonic anhydrase. Arch. Biochem. Biophys. 211:632–642.
  • Koester, M. K., Register A. M., and Noltmann E. A.. 1977. Basic muscle protein, a third genetic locus isoenzyme of carbonic anhydrase? Biochem. Biophys. Res. Commun. 76:196–204.
  • Kubis, H. P., and Gros G.. 1997. A rapid electrophoretic method for separating rabbit skeletal muscle myosin heavy chains at high resolution. Electrophoresis 18:64–66.
  • Lehtonen, J., Shen B., Vihinen M., Casini A., Scozzafava A., Supuran C. T., Parkkila A. K., Saarnio J., Kivela A. J., Waheed A., Sly W. S., and Parkkila S.. 2004. Characterization of CA XIII, a novel member of the carbonic anhydrase isozyme family. J. Biol. Chem. 279:2719–2727.
  • Levine, R. L. 2002. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic. Biol. Med. 32:790–796.
  • Levine, R. L., Wehr N., Williams J. A., Stadtman E. R., and Shacter E.. 2000. Determination of carbonyl groups in oxidized proteins. Methods Mol. Biol. 99:15–24.
  • Lii, C. K., Chai Y. C., Zhao W., Thomas J. A., and Hendrich S.. 1994. S-thiolation and irreversible oxidation of sulfhydryls on carbonic anhydrase III during oxidative stress: a method for studying protein modification in intact cells and tissues. Arch. Biochem. Biophys. 308:231–239.
  • Lynch, C. J., Brennan W. A., Jr., Vary T. G., Carter N. D., and Dodgson S. J.. 1993. Carbonic anhydrase III in obese Zucker rats. Am. J. Physiol. 264:E621–E630.
  • Lynch, C. J., McCall K. M., Billingsley M. L., Bohlen L. M., Hreniuk S. P., Martin L. F., Witters L. A., and Vannucci S. J.. 1992. Pyruvate carboxylase in genetic obesity. Am. J. Physiol. 262:E608–E618.
  • Lyons, G. E., Buckingham M. E., Tweedie S., and Edwards Y. H.. 1991. Carbonic anhydrase III, an early mesodermal marker, is expressed in embryonic mouse skeletal muscle and notochord. Development 111:233–244.
  • Moriguchi, T., Loewke J., Garrison M., Catalan J. N., and Salem N., Jr. 2001. Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum. J. Lipid Res. 42:419–427.
  • Raisanen, S. R., Lehenkari P., Tasanen M., Rahkila P., Harkonen P. L., and Vaananen H. K.. 1999. Carbonic anhydrase III protects cells from hydrogen peroxide-induced apoptosis. FASEB J. 13:513–522.
  • Register, A. M., Koester M. K., and Noltmann E. A.. 1978. Discovery of carbonic anhydrase in rabbit skeletal muscle and evidence for its identity with “basic muscle protein. ” J. Biol. Chem. 253:4143–4152.
  • Richardson, D. E., Regino C. A., Yao H., and Johnson J. V.. 2003. Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide. Free Radic. Biol. Med. 35:1538–1550.
  • Richardson, D. E., Yao H. R., Frank K. M., and Bennett D. A.. 2000. Equilibria, kinetics, and mechanism in the bicarbonate activation of hydrogen peroxide: oxidation of sulfides by peroxymonocarbonate. J. Am. Chem. Soc. 122:1729–1739.
  • Rokutan, K., Thomas J. A., and Sies H.. 1989. Specific S-thiolation of a 30 KDa cytosolic protein from rat liver under oxidative stress. Eur. J. Biochem. 179:233–239.
  • Sly, W. S., Hewett-Emmett D., Dodgson S. J., Yu Y. S., and Tashian R. E.. 1983. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc. Natl. Acad. Sci. USA 80:2752–2756.
  • Sly, W. S., and Hu P. Y.. 1995. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu. Rev. Biochem. 64:375–401.
  • Spicer, S. S., Ge Z. H., Tashian R. E., Hazen-Martin D. J., and Schulte B.. 1990. Comparative distribution of carbonic anhydrase isoenzymes III and II in rodent tissues. Am. J. Anat. 187:55–64.
  • Stanton, L. W., Ponte P. A., Coleman R. T., and Snyder M. A.. 1991. Expression of CA III in rodent models of obesity. Mol. Endocrinol. 5:860–866.
  • Starke-Reed, P. E., and Oliver C. N.. 1989. Protein oxidation and proteolysis during aging and oxidative stress. Arch. Biochem. Biophys. 275:559–567.
  • Tashian, R. E. 1989. The carbonic anhydrases: widening perspectives on their evolution, expression and function. Bioessays 10:186–192.
  • Thomas, J. A., Poland B., and Honzatko R.. 1995. Protein sulfhydryls and their role in the antioxidant function of protein S-thiolation. Arch. Biochem. Biophys. 319:1–9.
  • Tybulewicz, V. L., Crawford C. E., Jackson P. K., Bronson R. T., and Mulligan R. C.. 1991. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65:1153–1163.
  • Wetzel, P., Liebner T., and Gros G.. 1990. Carbonic anhydrase inhibition and calcium transients in soleus fibers. FEBS Lett. 267:66–70.
  • Wolfinger, R. D., Gibson G., Wolfinger E. D., Bennett L., Hamadeh H., Bushel P., Afshari C., and Paules R. S.. 2001. Assessing gene significance from cDNA microarray expression data via mixed models. J. Comput. Biol. 8:625–637.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.