10
Views
8
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Xenopus Cds1 Is Regulated by DNA-Dependent Protein Kinase and ATR during the Cell Cycle Checkpoint Response to Double-Stranded DNA Ends

&
Pages 9968-9985 | Received 26 Apr 2004, Accepted 30 Aug 2004, Published online: 27 Mar 2023

REFERENCES

  • Abraham, R. T. 2001. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15:2177–2196.
  • Ahn, J., and Prives C.. 2002. Checkpoint kinase 2 (Chk2) monomers or dimers phosphorylate Cdc25C after DNA damage regardless of threonine 68 phosphorylation. J. Biol. Chem. 277:48418–48426.
  • Ahn, J. Y., Li X., Davis H. L., and Canman C. E.. 2002. Phosphorylation of threonine 68 promotes oligomerization and autophosphorylation of the Chk2 protein kinase via the forkhead-associated domain. J. Biol. Chem. 277:19389–19395.
  • Ahn, J. Y., Schwarz J. K., Piwnica-Worms H., and Canman C. E.. 2000. Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res. 60:5934–5936.
  • Alexandropoulos, K., Cheng G., and Baltimore D.. 1995. Proline-rich sequences that bind to Src homology 3 domains with individual specificities. Proc. Natl. Acad. Sci. USA 92:3110–3114.
  • Bartek, J., Falck J., and Lukas J.. 2001. CHK2 kinase—a busy messenger. Nat. Rev. Mol. Cell Biol. 2:877–886.
  • Bell, D. W., Varley J. M., Szydlo T. E., Kang D. H., Wahrer D. C., Shannon K. E., Lubratovich M., Verselis S. J., Isselbacher K. J., Fraumeni J. F., Birch J. M., Li F. P., Garber J. E., and Haber D. A.. 1999. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286:2528–2531.
  • Bharti, A., Kraeft S. K., Gounder M., Pandey P., Jin S., Yuan Z. M., Lees-Miller S. P., Weichselbaum R., Weaver D., Chen L. B., Kufe D., and Kharbanda S.. 1998. Inactivation of DNA-dependent protein kinase by protein kinase Cδ: implications for apoptosis. Mol. Cell. Biol. 18:6719–6728.
  • Blasina, A., de Weyer I. V., Laus M. C., Luyten W. H., Parker A. E., and McGowan C. H.. 1999. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr. Biol. 9:1–10.
  • Brown, A. L., Lee C. H., Schwarz J. K., Mitiku N., Piwnica-Worms H., and Chung J. H.. 1999. A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc. Natl. Acad. Sci. USA 96:3745–3750.
  • Carpenter, P. B., Mueller P. R., and Dunphy W. G.. 1996. Role for a Xenopus Orc2-related protein in controlling DNA replication. Nature 379:357–360.
  • Carr, A. M. 1997. Control of cell cycle arrest by the Mec1sc/Rad3sp DNA structure checkpoint pathway. Curr. Opin. Genet. Dev. 7:93–98.
  • Chan, D. W., Ye R., Veillette C. J., and Lees-Miller S. P.. 1999. DNA-dependent protein kinase phosphorylation sites in Ku 70/80 heterodimer. Biochemistry 38:1819–1828.
  • Elledge, S. J. 1996. Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672.
  • Falck, J., Lukas C., Protopopova M., Lukas J., Selivanova G., and Bartek J.. 2001. Functional impact of concomitant versus alternative defects in the Chk2-p53 tumour suppressor pathway. Oncogene 20:5503–5510.
  • Foray, N., Marot D., Randrianarison V., Venezia N. D., Picard D., Perricaudet M., Favaudon V., and Jeggo P.. 2002. Constitutive association of BRCA1 and c-Abl and its ATM-dependent disruption after irradiation. Mol. Cell. Biol. 22:4020–4032.
  • Giaccia, A. J., and Kastan M. B.. 1998. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12:2973–2983.
  • Gotoh, T., Ohsumi K., Matsui T., Takisawa H., and Kishimoto T.. 2001. Inactivation of the checkpoint kinase Cds1 is dependent on cyclin B-Cdc2 kinase activation at the meiotic G2/M-phase transition in Xenopus oocytes. J. Cell Sci. 114:3397–3406.
  • Goudelock, D. M., Jiang K., Pereira E., Russell B., and Sanchez Y.. 2003. Regulatory interactions between the checkpoint kinase Chk1 and the proteins of the DNA-dependent protein kinase complex. J. Biol. Chem. 278:29940–29947.
  • Guo, Z., and Dunphy W. G.. 2000. Response of Xenopus Cds1 in cell-free extracts to DNA templates with double-stranded ends. Mol. Biol. Cell 11:1535–1546.
  • Guo, Z., Kumagai A., Wang S. X., and Dunphy W. G.. 2000. Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes Dev. 14:2745–2756.
  • Hekmat-Nejad, M., You Z., Yee M. C., Newport J. W., and Cimprich K. A.. 2000. Xenopus ATR is a replication-dependent chromatin-binding protein required for the DNA replication checkpoint. Curr. Biol. 10:1565–1573.
  • Higuchi, R., Krummel B., and Saiki R. K.. 1988. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16:7351–7367.
  • Hirao, A., Cheung A., Duncan G., Girard P. M., Elia A. J., Wakeham A., Okada H., Sarkissian T., Wong J. A., Sakai T., De Stanchina E., Bristow R. G., Suda T., Lowe S. W., Jeggo P. A., Elledge S. J., and Mak T. W.. 2002. Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Mol. Cell. Biol. 22:6521–6532.
  • Hirao, A., Kong Y. Y., Matsuoka S., Wakeham A., Ruland J., Yoshida H., Liu D., Elledge S. J., and Mak T. W.. 2000. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287:1824–1827.
  • Jack, M. T., Woo R. A., Motoyama N., Takai H., and Lee P. W.. 2004. DNA-dependent protein kinase and checkpoint kinase 2 synergistically activate a latent population of p53 upon DNA damage. J. Biol. Chem. 279:15269–15273.
  • Jones, R. E., Chapman J. R., Puligilla C., Murray J. M., Car A. M., Ford C. C., and Lindsay H. D.. 2003. XRad17 is required for the activation of XChk1 but not XCds1 during checkpoint signaling in Xenopus. Mol. Biol. Cell 14:3898–3910.
  • Katsuragi, Y., and Sagata N.. 2004. Regulation of Chk1 kinase by autoinhibition and ATR-mediated phosphorylation. Mol. Biol. Cell 15:1680–1689.
  • Kim, S. T., Lim D. S., Canman C. E., and Kastan M. B.. 1999. Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 274:37538–37543.
  • Kumagai, A., and Dunphy W. G.. 1995. Control of the Cdc2/cyclin B complex in Xenopus egg extracts arrested at a G2/M checkpoint with DNA synthesis inhibitors. Mol. Biol. Cell 6:199–213.
  • Kumagai, A., Guo Z., Emami K. H., Wang S. X., and Dunphy W. G.. 1998. The Xenopus Chk1 protein kinase mediates a caffeine-sensitive pathway of checkpoint control in cell-free extracts. J. Cell Biol. 142:1559–1569.
  • Labhart, P. 1999. Ku-dependent nonhomologous DNA end joining in Xenopus egg extracts. Mol. Cell. Biol. 19:2585–2593.
  • Lee, C. H., and Chung J. H.. 2001. The hCds1 (Chk2)-FHA domain is essential for a chain of phosphorylation events on hCds1 that is induced by ionizing radiation. J. Biol. Chem. 276:30537–30541.
  • Lee, J. S., Collins K. M., Brown A. L., Lee C. H., and Chung J. H.. 2000. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404:201–204.
  • Lee, S. B., Kim S. H., Bell D. W., Wahrer D. C., Schiripo T. A., Jorczak M. M., Sgroi D. C., Garber J. E., Li F. P., Nichols K. E., Varley J. M., Godwin A. K., Shannon K. M., Harlow E., and Haber D. A.. 2001. Destabilization of CHK2 by a missense mutation associated with Li-Fraumeni syndrome. Cancer Res. 61:8062–8067.
  • Li, J., Williams B. L., Haire L. F., Goldberg M., Wilker E., Durocher D., Yaffe M. B., Jackson S. P., and Smerdon S. J.. 2002. Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2. Mol. Cell 9:1045–1054.
  • Lou, Z., Minter-Dykhouse K., Wu X., and Chen J.. 2003. MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 421:957–961.
  • Matsuoka, S., Huang M., and Elledge S. J.. 1998. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282:1893–1897.
  • Matsuoka, S., Rotman G., Ogawa A., Shiloh Y., Tamai K., and Elledge S. J.. 2000. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl. Acad. Sci. USA 97:10389–10394.
  • McGowan, C. H. 2002. Checking in on Cds1 (Chk2): a checkpoint kinase and tumor suppressor. Bioessays 24:502–511.
  • Melchionna, R., Chen X. B., Blasina A., and McGowan C. H.. 2000. Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nat. Cell Biol. 2:762–765.
  • Mueller, P. R., Coleman T. R., and Dunphy W. G.. 1995. Cell cycle regulation of a Xenopus Wee1-like kinase. Mol. Biol. Cell 6:119–134.
  • Murray, A. W. 1991. Cell cycle extracts. Methods Cell Biol. 36:581–605.
  • Obenauer, J. C., Cantley L. C., and Yaffe M. B.. 2003. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 31:3635–3641.
  • Rhind, N., and Russell P.. 2000. Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways. J. Cell Sci. 113(Pt. 22):3889–3896.
  • Robertson, K., Hensey C., and Gautier J.. 1999. Isolation and characterization of Xenopus ATM (X-ATM): expression, localization, and complex formation during oogenesis and early development. Oncogene 18:7070–7079.
  • Schwarz, J. K., Lovly C. M., and Piwnica-Worms H.. 2003. Regulation of the Chk2 protein kinase by oligomerization-mediated cis- and trans-phosphorylation. Mol. Cancer Res. 1:598–609.
  • Smith, G. C., and Jackson S. P.. 1999. The DNA-dependent protein kinase. Genes Dev. 13:916–934.
  • Stevens, C., Smith L., and La Thangue N. B.. 2003. Chk2 activates E2F-1 in response to DNA damage. Nat. Cell Biol. 5:401–409.
  • Stokes, M. P., Van Hatten R., Lindsay H. D., and Michael W. M.. 2002. DNA replication is required for the checkpoint response to damaged DNA in Xenopus egg extracts. J. Cell Biol. 158:863–872.
  • Tanaka, K., and Russell P.. 2001. Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1. Nat. Cell Biol. 3:966–972.
  • Theard, D., Coisy M., Ducommun B., Concannon P., and Darbon J. M.. 2001. Etoposide and adriamycin but not genistein can activate the checkpoint kinase Chk2 independently of ATM/ATR. Biochem. Biophys. Res. Commun. 289:1199–1204.
  • Toh, G. W., and Lowndes N. F.. 2003. Role of the Saccharomyces cerevisiae Rad9 protein in sensing and responding to DNA damage. Biochem. Soc. Trans. 31:242–246.
  • Turner, D. L., and Weintraub H.. 1994. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 8:1434–1447.
  • Walworth, N. C. 2000. Cell-cycle checkpoint kinases: checking in on the cell cycle. Curr. Opin. Cell Biol. 12:697–704.
  • Wang, B., Matsuoka S., Carpenter P. B., and Elledge S. J.. 2002. 53BP1, a mediator of the DNA damage checkpoint. Science 298:1435–1438.
  • Wang, S., Guo M., Ouyang H., Li X., Cordon-Cardo C., Kurimasa A., Chen D. J., Fuks Z., Ling C. C., and Li G. C.. 2000. The catalytic subunit of DNA-dependent protein kinase selectively regulates p53-dependent apoptosis but not cell-cycle arrest. Proc. Natl. Acad. Sci. USA 97:1584–1588.
  • Xu, X., Tsvetkov L. M., and Stern D. F.. 2002. Chk2 activation and phosphorylation-dependent oligomerization. Mol. Cell. Biol. 22:4419–4432.
  • Yang, J., Yu Y., Hamrick H. E., and Duerksen-Hughes P. J.. 2003. ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses. Carcinogenesis 24:1571–1580.
  • Yang, S., Kuo C., Bisi J. E., and Kim M. K.. 2002. PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat. Cell Biol. 4:865–870.
  • Zhou, B. B., and Elledge S. J.. 2000. The DNA damage response: putting checkpoints in perspective. Nature 408:433–439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.