30
Views
49
CrossRef citations to date
0
Altmetric
Cell Growth and Development

A Mammalian Ortholog of Saccharomyces cerevisiae Vac14 That Associates with and Up-Regulates PIKfyve Phosphoinositide 5-Kinase Activity

, , , , , , & show all
Pages 10437-10447 | Received 01 Jul 2004, Accepted 16 Sep 2004, Published online: 27 Mar 2023

REFERENCES

  • Bonangelino, C. J., Catlett N. L., and Weisman L. S.. 1997. Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology. Mol. Cell. Biol. 17:6847–6858.
  • Bonangelino, C. J., Nau J. J., Duex J. E., Brinkman M., Wurmser A. E., Gary J. D., Emr S. D., and Weisman L. S.. 2002. Osmotic stress-induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. J. Cell Biol. 156:1015–1028.
  • Dove, S. K., Cooke F. T., Douglas M. R., Sayers L. G., Parker P. J., and Michell R. H.. 1997. Osmotic stress activates phosphatidylinositol-3,5-bisphospahte synthesis. Nature 390:187–192.
  • Dove, S. K., McEwen R. K., Mayes A., Hughes D. C., Beggs J. D., and Michell R. H.. 2002. Vac14 controls PtdIns(3,5)P(2) synthesis and Fab1-dependent protein trafficking to the multivesicular body. Curr. Biol. 12:885–893.
  • Gary, J. D., Wurmser A. E., Bonangelino C. J., Weisman L. S., and Emr S. D.. 1998. Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J. Cell Biol. 143:65–79.
  • Gary, J. D., Sato T. K., Stefan C. J., Bonangelino C. J., Weisman L. S., and Emr S. D.. 2002. Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol. Biol. Cell 13:1238–1251.
  • Ikonomov, O. C., Sbrissa D., and Shisheva A.. 2001. Mammalian cell morphology and endocytic membrane homeostasis require PIKfyve enzymatic activity. J. Biol. Chem. 276:26141–26147.
  • Ikonomov, O. C., Sbrissa D., Mlak K., Deeb R., Fligger J., Soans A., Finley R. L., Jr., and Shisheva A.. 2003. Active PIKfyve associates with and promotes the membrane attachment of the late endosome-to-TGN transport factor Rab9 effector p40. J. Biol. Chem. 278:50863–50871.
  • Ikonomov, O. C., Sbrissa D., Mlak K., Kanzaki M., Pessin J., and Shisheva A.. 2002. Functional dissection of lipid and protein kinase signals of PIKfyve reveals the role of PtdIns(3,5)P2 production for endomembrane integrity. J. Biol. Chem. 277:9206–9211.
  • Ikonomov, O. C., Sbrissa D., Foti M., Carpentier J.-L., and Shisheva A.. 2003. PIKfyve controls fluid-phase endocytosis but not recycling/degradation of endocytosed receptors or sorting of procathepsin D by regulating multivesicular body morphogenesis. Mol. Biol. Cell 14:4581–4591.
  • Ikonomov, O. C., Sbrissa D., Yoshimori T., Cover T. L., and Shisheva A.. 2002. PIKfyve kinase and SKD1 AAA ATPase define distinct endocytic compartments. J. Biol. Chem. 277:46785–46790.
  • Jones, D. R., González-García A., Díez E., Martinez C., Carrera A. C., and Mérida I.. 1999. The identification of phosphatidylinositol 3,5-bisphosphate in T-lymphocytes and its regulation by interleukin-2. J. Biol. Chem. 274:18407–18413.
  • McEwen, R. K., Dove S. K., Cooke K. T., Painter G. F., Holmes A. B., Shisheva A., Ohya Y., Parker P. J., and Michell R. H.. 1999. Complementation analysis in PtdInsP kinase-deficient yeast mutants demonstrates that Schizosaccharomyces pombe and murine Fab1p homologues are phosphatidylinositol 3-phosphate 5-kinases. J. Biol. Chem. 274:33905–33912.
  • Odorizzi, G., Babst M., and Emr S. D.. 1998. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95:847–858.
  • Rudge, S. A., Anderson D. M., and Emr S. D.. 2004. Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3,5)P2-specific phosphatase. Mol. Biol. Cell 15:24–36.
  • Sbrissa, D., Ikonomov O. C., and Shisheva A.. 1999. PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5′-phosphoinositides: effect of insulin. J. Biol. Chem. 274:21589–21597.
  • Sbrissa, D., Ikonomov O. C., Deeb R., and Shisheva A.. 2002. Phosphatidylinositol 5-phosphate biosynthesis is linked to PIKfyve and is involved in osmotic response pathway. J. Biol. Chem. 277:47276–47284.
  • Sbrissa, D., Ikonomov O. C., and Shisheva A.. 2001. Selective insulin-induced activation of class IA phosphoinositide 3-kinase in PIKfyve immune complexes from 3T3-L1 adipocytes. Mol. Cell. Endocrinol. 181:35–46.
  • Sbrissa, D., Ikonomov O. C., Strakova J., and Shisheva A.. 2004. Role for a novel signaling intermediate, phosphatidylinositol 5-phosphate in insulin-regulated F-actin stress fiber breakdown and GLUT4 translocation. Endocrinology 145:4853–4865.
  • Shisheva, A. 2001. PIKfyve: the road to PtdIns 5-P and PtdIns 3,5-P2. Cell Biol. Intern. 25:1201–1206.
  • Shisheva, A., Demarco C., Ikonomov O., and Sbrissa D.. 2002. Insulin signaling: from cultured cells to animal models, p. 189–205. In Grunberger G. and Zick Y. (ed.), PIKfyve and acute insulin actions. Taylor & Francis, London, England.
  • Shisheva, A., Doxsey S. J., Buxton J. M., and Czech M. P.. 1995. Pericentriolar targeting of GDP-dissociation inhibitor isoform 2. Eur. J. Cell Biol. 68:143–158.
  • Shisheva, A., Rusin B., Ikonomov O. C., DeMarco C., and Sbrissa D.. 2001. Localization and insulin-regulated relocation of 5′-phosphoinositide kinase PIKfyve in 3T3-L1 adipocytes. J. Biol. Chem. 276:11859–11869.
  • Shisheva, A., Sbrissa D., and Ikonomov O.. 1999. Cloning, characterization, and expression of a novel Zn2+-binding FYVE finger-containing phosphoinositide kinase in insulin-sensitive cells. Mol. Cell. Biol. 19:623–634.
  • Tsujita, K., Itoh T., Ijuin T., Yamamoto A., Shisheva A., Laporte J., and Takenawa T.. 2004. Myotubularin regulates the function of the late endosome through the GRAM domain-phosphatidylinositol 3,5-bisphosphate interaction. J. Biol. Chem. 279:13817–13824.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.