78
Views
190
CrossRef citations to date
0
Altmetric
Cell Growth and Development

p38α Mitogen-Activated Protein Kinase Plays a Critical Role in Cardiomyocyte Survival but Not in Cardiac Hypertrophic Growth in Response to Pressure Overload

, , , , , , , , , , , , , , , , , , , , , , & show all
Pages 10611-10620 | Received 26 Apr 2004, Accepted 09 Sep 2004, Published online: 27 Mar 2023

REFERENCES

  • Adams, R. H., Porras A., Alonso G., Jones M., Vintersten K., Paneill S., Valladares A., Perez l., Kein R., and Nebreda A. R.. 2000. Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol. Cell 6:109–116.
  • Agah, R., Frenkel P. A., French B. A., Michael L. H., Overbeek P. A., and Schneider M. D.. 1997. Gene recombination in postmitotic cells: targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J. Clin. Investig. 100:169–179.
  • Braz, J. C., Bueno O. F., Liang Q., Wilkins B. J., Dai Y. S., Parsons S., Braunwart J., Glascock B. J., Klevitsky R., Kimball T. F., Hewett T. E., and Molkentin J. D.. 2003. Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. J. Clin. Investig. 111:1475–1486.
  • Chen, J., Kubalak S., and Chien K.. 1998. Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis. Development 125:1943–1949.
  • Chevalier, D., and Allen B. G.. 2000. Two distinct forms of MAPKAP kinase-2 in adult cardiac ventricular myocytes. Biochemistry 39:6145–6156.
  • Choukroun, G., Hajjar R., Kyriakis J. M., Bonventre J. V., Rosenzweig A., and Force T.. 1998. Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy. J. Clin. Investig. 102:1311–1320.
  • Clerk, A., Michael A., and Sugden P. H.. 1998. Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: a role in cardiac myocyte hypertrophy? J. Cell Biol. 142:523–535.
  • Communal, C., Colucci W. S., and Singh K.. 2000. p38 Mitogen-activated protein kinase pathway protects adult rat ventricular myocytes against beta-adrenergic receptor-stimulated apoptosis: evidence for Gi-dependent activation. J. Biol. Chem. 275:19395–19400.
  • Date, M., Morita T., Yamashita N., Nishida K., Yamaguchi O., Higuchi Y., Hirotani S., Matsumura Y., Hori M., Tada M., and Otsu K.. 2002. The antioxidant N-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model. J. Am. Coll. Cardiol. 39:907–912.
  • Hirota, H., Chen J., Betz U. A., Rajewsky K., Gu Y., Ross J., Jr., Muller W., and Chien K. R.. 1999. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97:189–198.
  • Hoover, H. E., Thuerauf D. J., Martindale J. J., and Glembotski C. C.. 2000. Alpha B-crystallin gene induction and phosphorylation by MKK6-activated p38: a potential role for alpha B-crystallin as a target of the p38 branch of the cardiac stress response. J. Biol. Chem. 275:23825–23833.
  • Ivanov, V. N., and Ronai Z.. 2000. p38 protects human melanoma cells from UV-induced apoptosis through down-regulation of NF-kappaB activity and Fas expression. Oncogene 19:3003–3012.
  • Johnson, G. L., and Lapadat R.. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912.
  • Kaiser, R. A., Bueno O. F., Lips D. J., Doevendans P. A., Jones F., Kimball T. F., and Molkentin J. D.. 2004. Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfusion in vivo. J. Biol. Chem. 279:15524–15530.
  • Kang, P. M., Haunstetter A., Aoki H., Usheva A., and Izumo S.. 2000. Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ. Res. 87:118–125.
  • Kumar, S., McDonnell P. C., Gum R. J., Hand A. T., Lee J. C., and Young P. R.. 1997. Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem. Biophys. Res. Commun. 235:533–538.
  • Lakso, M., Pichel J. G., Gorman J. R., Sauer B., Okamoto Y., Lee E., Alt F. W., and Westphal H.. 1996. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93:5860–5865.
  • Lee, J., Laydon J., McDonnell P., Gallagher T., Kumar S., Green D., McNulty D., Blumenthal M., Heys J., Landvatter S., Strickler J., McLaughlin M., Siemens I., Fisher S., Livi G., White J., Adams J., and Young P.. 1994. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372:739–746.
  • Liao, P., Georgakopoulos D., Kovacs A., Zheng M., Lerner D., Pu H., Saffitz J., Chien K., Xiao R.-P., Kass D. A., and Wang Y.. 2001. The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc. Natl. Acad. Sci. USA 98:12283–12288.
  • Ma, X. L., Kumar S., Gao F., Louden C. S., Lopez B. L., Christopher T. A., Wang C., Lee J. C., Feuerstein G. Z., and Yue T.-L.. 1999. Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 99:1685–1691.
  • Mackay, K., and Mochly-Rosen D.. 1999. An inhibitor of p38 mitogen-activated protein kinase protects neonatal cardiac myocytes ischemia. J. Biol. Chem. 274:6272–6279.
  • Nakayama, H., Otsu K., Yamaguchi O., Nishida K., Date M., Hongo K., Kusakari Y., Toyofuku T., Hikoso S., Kashiwase K., Takeda T., Matsumura Y., Kurihara S., Hori M., and Tada M.. 2003. Cardiac-specific overexpression of a high Ca2+ affinity mutant of SERCA2a attenuates in vivo pressure overload cardiac hypertrophy. FASEB J. 17:61–63.
  • Nemoto, S., Sheng Z., and Lin A.. 1998. Opposing effects of Jun kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy. Mol. Cell. Biol. 18:3518–3526.
  • Nemoto, S., Xiang J., Huang S., and Lin A.. 1998. Induction of apoptosis by SB202190 through inhibition of p38beta mitogen-activated protein kinase. J. Biol. Chem. 273:16415–16420.
  • Oltvai, Z. N., Milliman C. L., and Korsmeyer S. J.. 1993. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619.
  • Otsu, K., Yamashita N., Nishida K., Hirotani S., Yamaguchi O., Watanabe T., Hikoso S., Higuchi Y., Matsumura Y., Maruyama M., Sudo T., Osada H., and Hori M.. 2003. Disruption of a single copy of the p38alpha MAP kinase gene leads to cardioprotection against ischemia-reperfusion. Biochem. Biophys. Res. Commun. 302:56–60.
  • Rockman, H., Ross R., Harris A., Knowlton K., Steinhelper M., Field L., Ross J., Jr., and Chien K.. 1991. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 88:8277–8281.
  • Rouse, J., Cohen P., Trigon S., Morange M., Alonso-Llamazares A., Zamanillo D., Hunt T., and Nebreda A.. 1994. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78:1027–1037.
  • Sakai, K., and Miyazaki J.. 1997. A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission. Biochem. Biophys. Res. Commun. 237:318–324.
  • Tamura, K., Sudo T., Senftleben U., Dadak A. M., Johnson R., and Karin M.. 2000. Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell 102:221–231.
  • Tan, Y., Rouse J., Zhang A., Cariati S., Cohen P., and Comb M.. 1996. FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J. 15:4629–4642.
  • Utani, A., Tanaka T., Nishigori C., Miyachi Y., Danno K., Imamura S., Hosokawa M., Takeda T., Hirayoshi K., and Nagata K.. 1990. Another mechanism for the defect in type III collagen accumulation in Ehlers-Danlos syndrome type IV: increased intracellular degradation of the procollagen. Lab. Investig. 63:181–188.
  • Wang, Y., Huang S., Sah V. P., Ross J. Jr., Brown J. H., Han J., and Chien K. R.. 1998. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J. Biol. Chem. 273:2161–2168.
  • Xia, Z., Dickens M., Raingeaud J., Davis R. J., and Greenberg M. E.. 1995. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331.
  • Yamaguchi, O., Higuchi Y., Hirotani S., Kashiwase K., Nakayama H., Hikoso S., Takeda T., Watanabe T., Asahi M., Taniike M., Matsumura Y., Tsujimoto I., Hongo K., Kusakari Y., Kurihara S., Nishida K., Ichijo H., Hori M., and Otsu K.. 2003. Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proc. Natl. Acad. Sci. USA 100:15883–15888.
  • Yasukawa, H., Yajima T., Duplain H., Iwatate M., Kido M., Hoshijima M., Weitzman M. D., Nakamura T., Woodard S., Xiong D., Yoshimura A., Chien K. R., and Knowlton K. U.. 2003. The suppressor of cytokine signaling-1 (SOCS1) is a novel therapeutic target for enterovirus-induced cardiac injury. J. Clin. Investig. 111:469–478.
  • Zechner, D., Thuerauf D. J., Hanford D. S., McDonough P. M., and Glembotski C. C.. 1997. A role for the p38 mitogen-activated protein kinase pathway in myocardial cell growth, sarcomeric organization, and cardiac-specific gene expression. J. Cell Biol. 139:115–127.
  • Zhang, S., Weinheimer C., Courtois M., Kovacs A., Zhang C. E., Cheng A. M., Wang Y., and Muslin A. J.. 2003. The role of the Grb2-p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis. J. Clin. Investig. 111:833–841.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.