36
Views
64
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The Corepressor mSin3A Regulates Phosphorylation-Induced Activation, Intranuclear Location, and Stability of AML1

, , , , , , , , & show all
Pages 1033-1043 | Received 17 Mar 2003, Accepted 31 Oct 2003, Published online: 27 Mar 2023

REFERENCES

  • Ayer, D. E. 1999. Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol. 9:193–198.
  • Bruhn, L., Munnerlyn A., and Grosschedl R.. 1997. ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRα enhancer function. Genes Dev. 11:640–653.
  • Chen, L. F., Ito K., Murakami Y., and Ito Y.. 1998. The capacity of polyomavirus enhancer binding protein 2αB (AML1/Cbfa2) to stimulate polyomavirus DNA replication is related to its affinity for the nuclear matrix. Mol. Cell. Biol. 18:4165–4176.
  • Cowell, I. G. 1994. Repression versus activation in the control of gene transcription. Trends Biochem. Sci. 19:38–42.
  • Golub, T. R., Barker G. F., Bohlander S. K., Hiebert S. W., Ward D. C., Bray-Ward P., Morgan E., Raimondi S. C., Rowley J. D., and Gilliland D. G.. 1995. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 92:4917–4921.
  • Herschbach, B. M., and Johnson A. D.. 1993. Transcriptional repression in eukaryotes. Annu. Rev. Cell Biol. 9:479–509.
  • Huang, G., Shigesada K., Ito K., Wee H. J., Yokomizo T., and Ito Y.. 2001. Dimerization with PEBP2β protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J. 20:723–733.
  • Imai, Y., Kurokawa M., Izutsu K., Hangaishi A., Maki K., Ogawa S., Chiba S., Mitani K., and Hirai H.. 2001. Mutations of the Smad4 gene in acute myelogeneous leukemia and their functional implications in leukemogenesis. Oncogene 20:88–96.
  • Imai, Y., Kurokawa M., Izutsu K., Hangaishi A., Takeuchi K., Maki K., Ogawa S., Chiba S., Mitani K., and Hirai H.. 2000. Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. Blood 96:3154–3160.
  • Imai, Y., Kurokawa M., Tanaka K., Friedman A. D., Ogawa S., Mitani K., Yazaki Y., and Hirai H.. 1998. TLE, the human homolog of Groucho, interacts with AML1 and acts as a repressor of AML1-induced transactivation. Biochem. Biophys. Res. Commun. 252:582–589.
  • Ishida, N., Kitagawa M., Hatakeyama S., and Nakayama K.. 2000. Phosphorylation at serine 10, a major phosphorylation site of p27(Kip1), increases its protein stability J. Biol. Chem. 275:25146–25154.
  • Kitabayashi, I., Yokoyama A., Shimizu K., and Ohki M.. 1998. Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation. EMBO J. 17:2994–3004.
  • Knoepfler, P. S., and Eisenman R. N.. 1999. Sin meets NuRD and other tails of repression. Cell 99:447–450.
  • Koipally, J., Renold A., Kim J., and Georgopoulos K.. 1999. Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. EMBO J. 18:3090–3100.
  • Kunkel, T. A., Roberts J. D., and Zakour R. A.. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382.
  • Kurokawa, M., Mitani K., Irie K., Matsuyama T., Takahashi T., Chiba S., Yazaki Y., Matsumoto K., and Hirai H.. 1998. The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3. Nature 394:92–96.
  • Kurokawa, M., Tanaka T., Tanaka K., Ogawa S., Mitani K., Yazaki Y., and Hirai H.. 1996. Overexpression of the AML1 proto-oncoprotein in NIH3T3 cells leads to neoplastic transformation depending on the DNA-binding and transactivational potencies. Oncogene 12:883–892.
  • Laherty, C. D., Yang W. M., Sun J. M., Davie J. R., Seto E., and Eisenman R. N.. 1997. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89:349–356.
  • Levanon, D., Goldstein R. E., Bernstein Y., Tang H., Goldenberg D., Stifani S., Paroush Z., and Groner Y.. 1998. Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc. Natl. Acad. Sci. USA 95:11590–11595.
  • Lutterbach, B., and Hiebert S. W.. 2000. Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. Gene 245:223–235.
  • Lutterbach, B., Westendorf J. J., Linggi B., Isaac S., Seto E., and Hiebert S. W.. 2000. A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia. J. Biol. Chem. 275:651–656.
  • Maciejewski, P. M., Peterson F. C., Anderson P. J., and Brooks C. L.. 1995. Mutation of serine 90 to glutamic acid mimics phosphorylation of bovine prolactin. J. Biol. Chem. 270:27661–27665.
  • Mitani, K., Ogawa S., Tanaka T., Miyoshi H., Kurokawa M., Mano H., Yazaki Y., Ohki M., and Hirai H.. 1994. Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J. 13:504–510.
  • Miyoshi, H., Shimizu K., Kozu T., Maseki N., Kaneko Y., and Ohki M.. 1991. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci. USA 88:10431–10434.
  • Murphy, M., Ahn J., Walker K. K., Hoffman W. H., Evans R. M., Levine A. J., and George D. L.. 1999. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3A. Genes Dev. 13:2490–2501.
  • Niki, M., Okada H., Takano H., Kuno J., Tani K., Hibino H., Asano S., Ito Y., Satake M., and Noda T.. 1997. Hematopoiesis in the fetal liver is impaired by targeted mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor, polyomavirus enhancer binding protein 2/core binding factor. Proc. Natl. Acad. Sci. USA 94:5697–5702.
  • Nuchprayoon, I., Meyers S., Scott L. M., Suzow J., Hiebert S., and Friedman A. D.. 1994. PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2β/CBFβ proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol. Cell. Biol. 14:5558–5568.
  • Ogawa, E., Inuzuka M., Maruyama M., Satake M., Naito-Fujimoto M., Ito Y., and Shigesada K.. 1993. Molecular cloning and characterization of PEBP2β, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2α. Virology 194:314–331.
  • Ohki, M. 1993. Molecular basis of the t(8;21) translocation in acute myeloid leukaemia. Semin. Cancer Biol. 4:369–375.
  • Okuda, T., van Deursen J., Hiebert S. W., Grosveld G., and Downing J. R.. 1996. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84:321–330.
  • Osato, M., Asou N., Abdalla E., Hoshino K., Yamasaki H., Okubo T., Suzushima H., Takatsuki K., Kanno T., Shigesada K., and Ito Y.. 1999. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2αB gene associated with myeloblastic leukemias. Blood 93:1817–1824.
  • Pazin, M. J., and Kadonaga J. T.. 1997. What's up and down with histone deacetylation and transcription? Cell 89:325–328.
  • Preudhomme, C., Warot-Loze D., Roumier C., Grardel-Duflos N., Garand R., Lai J. L., Dastugue N., Macintyre E., Denis C., Bauters F., Kerckaert J. P., Cosson A., and Fenaux P.. 2000. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2αB gene in M0 acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood 96:2862–2869.
  • Romana, S. P., Mauchauffe M., Le Coniat M., Chumakov I., Le Paslier D., Berger R., and Bernard O. A.. 1995. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 85:3662–3670.
  • Song, W. J., Sullivan M. G., Legare R. D., Hutchings S., Tan X., Kufrin D., Ratajczak J., Resende I. C., Haworth C., Hock R., Loh M., Felix C., Roy D. C., Busque L., Kurnit D., Willman C., Gewirtz A. M., Speck N. A., Bushweller J. H., Li F. P., Gardiner K., Poncz M., Maris J. M., and Gilliland D. G.. 1999. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat. Genet. 23:166–175.
  • Sun, W., Graves B. J., and Speck N. A.. 1995. Transactivation of the Moloney murine leukemia virus and T-cell receptor β-chain enhancers by cbf and ets requires intact binding sites for both proteins. J. Virol. 69:4941–4949.
  • Takahashi, A., Satake M., Yamaguchi-Iwai Y., Bae S. C., Lu J., Maruyama M., Zhang Y. W., Oka H., Arai N., and Arai K.. 1995. Positive and negative regulation of granulocyte-macrophage colony-stimulating factor promoter activity by AML1-related transcription factor, PEBP2. Blood 86:607–616.
  • Takakura, N., Watanabe T., Suenobu S., Yamada Y., Noda T., Ito Y., Satake M., and Suda T.. 2000. A role for hematopoietic stem cells in promoting angiogenesis. Cell 102:199–209.
  • Tanaka, K., Tanaka T., Kurokawa M., Imai Y., Ogawa S., Mitani K., Yazaki Y., and Hirai H.. 1998. The AML1/ETO(MTG8) and AML1/Evi-1 leukemia-associated chimeric oncoproteins accumulate PEBP2β (CBFβ) in the nucleus more efficiently than wild-type AML1. Blood 91:1688–1699.
  • Tanaka, T., Kurokawa M., Ueki K., Tanaka K., Imai Y., Mitani K., Okazaki K., Sagata N., Yazaki Y., Shibata Y., Kadowaki T., and Hirai H.. 1996. The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Mol. Cell. Biol. 16:3967–3979.
  • Tanaka, T., Tanaka K., Ogawa S., Kurokawa M., Mitani K., Nishida J., Shibata Y., Yazaki Y., and Hirai H.. 1995. An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J. 14:341–350.
  • Taunton, J., Hassig C. A., and Schreiber S. L.. 1996. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411.
  • Wood, J. D., Nucifora F. C., Jr., Duan K., Zhang C., Wang J., Kim Y., Schilling G., Sacchi N., Liu J. M., and Ross C. A.. 2000. Atrophin-1, the dentato-rubral and pallido-luysian atrophy gene product, interacts with ETO/MTG8 in the nuclear matrix and represses transcription. J. Cell Biol. 150:939–948.
  • Yagi, R., Chen L. F., Shigesada K., Murakami Y., and Ito Y.. 1999. A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J. 18:2551–2562.
  • Yang, S. H., Vickers E., Brehm A., Kouzarides T., and Sharrocks A. D.. 2001. Temporal recruitment of the mSin3A-histone deacetylase corepressor complex to the ETS domain transcription factor Elk-1. Mol. Cell. Biol. 21:2802–2814.
  • Zeng, C., McNeil S., Pockwinse S., Nickerson J., Shopland L., Lawrence J. B., Penman S., Hiebert S., Lian J. B., van Wijnen A. J., Stein J. L., and Stein G. S.. 1998. Intranuclear targeting of AML/CBFα regulatory factors to nuclear matrix-associated transcriptional domains. Proc. Natl. Acad. Sci. USA 95:1585–1589.
  • Zeng, C., van Wijnen A. J., Stein J. L., Meyers S., Sun W., Shopland L., Lawrence J. B., Penman S., Lian J. B., Stein G. S., and Hiebert S. W.. 1997. Identification of a nuclear matrix targeting signal in the leukemia and bone-related AML/CBF-α transcription factors. Proc. Natl. Acad. Sci. USA 94:6746–6751.
  • Zhang, D. E., Fujioka K., Hetherington C. J., Shapiro L. H., Chen H. M., Look A. T., and Tenen D. G.. 1994. Identification of a region which directs the monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1). Mol. Cell. Biol. 14:8085–8095.
  • Zilfou, J. T., Hoffman W. H., Sank M., George D. L., and Murphy M.. 2001. The corepressor mSin3A interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol. Cell. Biol. 21:3974–3985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.