31
Views
93
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

BRG1 Controls the Activity of the Retinoblastoma Protein via Regulation of p21CIP1/WAF1/SDI

, &
Pages 1188-1199 | Received 09 Oct 2003, Accepted 03 Nov 2003, Published online: 27 Mar 2023

REFERENCES

  • Aalfs, J. D., and Kingston R. E.. 2000. What does ‘chromatin remodeling’ mean? Trends Biochem. Sci. 25:548–555.
  • Alcorta, D. A., Xiong Y., Phelps D., Hannon G., Beach D., and Barrett J. C.. 1996. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl. Acad. Sci. USA 93:13742–13747.
  • Berger, S. L. 2002. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12:142–148.
  • Betz, B. L., Strobeck M. W., Reisman D. N., Knudsen E. S., and Weissman B. E.. 2002. Re-expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G(1) arrest associated with induction of p16ink4a and activation of RB. Oncogene 21:5193–5203.
  • Brehm, A., Miska E. A., McCance D. J., Reid J. L., Bannister A. J., and Kouzarides T.. 1998. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391:597–601.
  • Brown, J. P., Wei W., and Sedivy J. M.. 1997. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277:831–834.
  • Buchkovich, K., Duffy L. A., and Harlow E.. 1989. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58:1097–1105.
  • Bultman, S., Gebuhr T., Yee D., La Mantia C., Nicholson J., Gilliam A., Randazzo F., Metzger D., Chambon P., Crabtree G., and Magnuson T.. 2000. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6:1287–1295.
  • Chen, P. L., Scully P., Shew J. Y., Wang J. Y., and Lee W. H.. 1989. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58:1193–1198.
  • Chen, X., Bargonetti J., and Prives C.. 1995. p53, through p21 (WAF1/CIP1), induces cyclin D1 synthesis. Cancer Res. 55:4257–4263.
  • Connell-Crowley, L., Harper J. W., and Goodrich D. W.. 1997. Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Mol. Biol. Cell 8:287–301.
  • DeCaprio, J. A., Furukawa Y., Ajchenbaum F., Griffin J. D., and Livingston D. M.. 1992. The retinoblastoma-susceptibility gene product becomes phosphorylated in multiple stages during cell cycle entry and progression. Proc. Natl. Acad. Sci. USA 89:1795–1798.
  • DeCaprio, J. A., Ludlow J. W., Lynch D., Furukawa Y., Griffin J., Piwnica-Worms H., Huang C. M., and Livingston D. M.. 1989. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58:1085–1095.
  • DeCristofaro, M. F., Betz B. L., Wang W., and Weissman B. E.. 1999. Alteration of hSNF5/INI1/BAF47 detected in rhabdoid cell lines and primary rhabdomyosarcomas but not Wilms' tumors. Oncogene 18:7559–7565.
  • de la Serna, I. L., Roy K., Carlson K. A., and Imbalzano A. N.. 2001. MyoD can induce cell cycle arrest but not muscle differentiation in the presence of dominant negative SWI/SNF chromatin remodeling enzymes. J. Biol. Chem. 276:41486–41491.
  • Dimri, G. P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E. E., Linskens M., Rubelj I., Pereira-Smith O., et al. 1995. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92:9363–9367.
  • Dunaief, J. L., Strober B. E., Guha S., Khavari P. A., Alin K., Luban J., Begemann M., Crabtree G. R., and Goff S. P.. 1994. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79:119–130.
  • Dyson, N. 1998. The regulation of E2F by pRB-family proteins. Genes Dev. 12:2245–2262.
  • Ewen, M. E., Sluss H. K., Sherr C. J., Matsushime H., Kato J., and Livingston D. M.. 1993. Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 73:487–497.
  • Fang, L., Igarashi M., Leung J., Sugrue M. M., Lee S. W., and Aaronson S. A.. 1999. p21Waf1/Cip1/Sdi1 induces permanent growth arrest with markers of replicative senescence in human tumor cells lacking functional p53. Oncogene 18:2789–2797.
  • Fry, C. J., and Peterson C. L.. 2001. Chromatin remodeling enzymes: who's on first? Curr. Biol. 11:R185–R197.
  • Galaktionov, K., Chen X., and Beach D.. 1996. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382:511–517.
  • Guidi, C. J., Sands A. T., Zambrowicz B. P., Turner T. K., Demers D. A., Webster W., Smith T. W., Imbalzano A. N., and Jones S. N.. 2001. Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol. Cell. Biol. 21:3598–3603.
  • Hassan, A. H., Neely K. E., Vignali M., Reese J. C., and Workman J. L.. 2001. Promoter targeting of chromatin-modifying complexes. Front. Biosci. 6:D1054–D1064.
  • Hatakeyama, M., Brill J. A., Fink G. R., and Weinberg R. A.. 1994. Collaboration of G1 cyclins in the functional inactivation of the retinoblastoma protein. Genes Dev. 8:1759–1771.
  • Hinds, P. W., Mittnacht S., Dulic V., Arnold A., Reed S. I., and Weinberg R. A.. 1992. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70:993–1006.
  • Hu, Q. J., Lees J. A., Buchkovich K. J., and Harlow E.. 1992. The retinoblastoma protein physically associates with the human cdc2 kinase. Mol. Cell. Biol. 12:971–980.
  • Imbalzano, A. N., Kwon H., Green M. R., and Kingston R. E.. 1994. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370:481–485.
  • Jenuwein, T., and Allis C. D.. 2001. Translating the histone code. Science 293:1074–1080.
  • Kadam, S., McAlpine G. S., Phelan M. L., Kingston R. E., Jones K. A., and Emerson B. M.. 2000. Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes Dev. 14:2441–2451.
  • Kato, J., Matsushime H., Hiebert S. W., Ewen M. E., and Sherr C. J.. 1993. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 7:331–342.
  • Khavari, P. A., Peterson C. L., Tamkun J. W., Mendel D. B., and Crabtree G. R.. 1993. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366:170–174.
  • Kitagawa, M., Higashi H., Jung H. K., Suzuki-Takahashi I., Ikeda M., Tamai K., Kato J., Segawa K., Yoshida E., Nishimura S., and Taya Y.. 1996. The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J. 15:7060–7069.
  • Klochendler-Yeivin, A., Fiette L., Barra J., Muchardt C., Babinet C., and Yaniv M.. 2000. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep. 1:500–506.
  • Klochendler-Yeivin, A., Muchardt C., and Yaniv M.. 2002. SWI/SNF chromatin remodeling and cancer. Curr. Opin. Genet. Dev. 12:73–79.
  • Knudsen, E. S., and Wang J. Y.. 1996. Differential regulation of retinoblastoma protein function by specific Cdk phosphorylation sites. J. Biol. Chem. 271:8313–8320.
  • Lee, M. H., and Yang H. Y.. 2001. Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell. Mol. Life Sci. 58:1907–1922.
  • Lin, A. W., Barradas M., Stone J. C., van Aelst L., Serrano M., and Lowe S. W.. 1998. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12:3008–3019.
  • Lin, B. T., Gruenwald S., Morla A. O., Lee W. H., and Wang J. Y.. 1991. Retinoblastoma cancer suppressor gene product is a substrate of the cell cycle regulator cdc2 kinase. EMBO J. 10:857–864.
  • Liu, H., Kang H., Liu R., Chen X., and Zhao K.. 2002. Maximal induction of a subset of interferon target genes requires the chromatin-remodeling activity of the BAF complex. Mol. Cell. Biol. 22:6471–6479.
  • Liu, R., Liu H., Chen X., Kirby M., Brown P. O., and Zhao K.. 2001. Regulation of CSF1 promoter by the SWI/SNF-like BAF complex. Cell 106:309–318.
  • Ludlow, J. W., Shon J., Pipas J. M., Livingston D. M., and DeCaprio J. A.. 1990. The retinoblastoma susceptibility gene product undergoes cell cycle-dependent dephosphorylation and binding to and release from SV40 large T. Cell 60:387–396.
  • Luo, R. X., Postigo A. A., and Dean D. C.. 1998. Rb interacts with histone deacetylase to repress transcription. Cell 92:463–473.
  • Magnaghi-Jaulin, L., Groisman R., Naguibneva I., Robin P., Lorain S., Le Villain J. P., Troalen F., Trouche D., and Harel-Bellan A.. 1998. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391:601–605.
  • Mittnacht, S. 1998. Control of pRB phosphorylation. Curr. Opin. Genet. Dev. 8:21–27.
  • Muchardt, C., and Yaniv M.. 1999. ATP-dependent chromatin remodelling: SWI/SNF and Co. are on the job. J. Mol. Biol. 293:187–198.
  • Nevins, J. R. 1998. Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ. 9:585–593.
  • Peterson, C. L., and Workman J. L.. 2000. Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr. Opin. Genet. Dev. 10:187–192.
  • Roberts, C. W., Galusha S. A., McMenamin M. E., Fletcher C. D., and Orkin S. H.. 2000. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc. Natl. Acad. Sci. USA 97:13796–13800.
  • Ross, J. F., Liu X., and Dynlacht B. D.. 1999. Mechanism of transcriptional repression of E2F by the retinoblastoma tumor suppressor protein. Mol. Cell 3:195–205.
  • Sager, R. 1991. Senescence as a mode of tumor suppression. Environ. Health Perspect. 93:59–62.
  • Serrano, M., Lin A. W., McCurrach M. E., Beach D., and Lowe S. W.. 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602.
  • Sevenet, N., Lellouch-Tubiana A., Schofield D., Hoang-Xuan K., Gessler M., Birnbaum D., Jeanpierre C., Jouvet A., and Delattre O.. 1999. Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype-phenotype correlations. Hum. Mol. Genet. 8:2359–2368.
  • Shanahan, F., Seghezzi W., Parry D., Mahony D., and Lees E.. 1999. Cyclin E associates with BAF155 and BRG1, components of the mammalian SWI-SNF complex, and alters the ability of BRG1 to induce growth arrest. Mol. Cell. Biol. 19:1460–1469.
  • Sherr, C., and McCormick F.. 2002. The RB and p53 pathways in cancer. Cancer Cell 2:103–112.
  • Staehling-Hampton, K., Ciampa P. J., Brook A., and Dyson N.. 1999. A genetic screen for modifiers of E2F in Drosophila melanogaster. Genetics 153:275–287.
  • Strobeck, M. W., Fribourg A. F., Puga A., and Knudsen E. S.. 2000. Restoration of retinoblastoma mediated signaling to Cdk2 results in cell cycle arrest. Oncogene 19:1857–1867.
  • Strobeck, M. W., Knudsen K. E., Fribourg A. F., DeCristofaro M. F., Weissman B. E., Imbalzano A. N., and Knudsen E. S.. 2000. BRG-1 is required for RB-mediated cell cycle arrest. Proc. Natl. Acad. Sci. USA 97:7748–7753.
  • Strober, B. E., Dunaief J. L., Guha, and Goff S. P.. 1996. Functional interactions between the hBRM/hBRG1 transcriptional activators and the pRB family of proteins. Mol. Cell. Biol. 16:1576–1583.
  • Sudarsanam, P., and Winston F.. 2000. The Swi/Snf family nucleosome-remodeling complexes and transcriptional control. Trends Genet. 16:345–351.
  • Sui, G., Soohoo C., Affar el B., Gay F., Shi Y., and Forrester W. C.. 2002. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99:5515–5520.
  • Templeton, D. J., Park S. H., Lanier L., and Weinberg R. A.. 1991. Nonfunctional mutants of the retinoblastoma protein are characterized by defects in phosphorylation, viral oncoprotein association, and nuclear tethering. Proc. Natl. Acad. Sci. USA 88:3033–3037.
  • Trouche, D., Le Chalony C., Muchardt C., Yaniv M., and Kouzarides T.. 1997. RB and hbrm cooperate to repress the activation functions of E2F1. Proc. Natl. Acad. Sci. USA 94:11268–11273.
  • Varga-Weisz, P. 2001. ATP-dependent chromatin remodeling factors: nucleosome shufflers with many missions. Oncogene 20:3076–3085.
  • Versteege, I., Sevenet N., Lange J., Rousseau-Merck M. F., Ambros P., Handgretinger R., Aurias A., and Delattre O.. 1998. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394:203–206.
  • Wang, W., Cote J., Xue Y., Zhou S., Khavari P. A., Biggar S. R., Muchardt C., Kalpana G. V., Goff S. P., Yaniv M., Workman J. L., and Crabtree G. R.. 1996. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15:5370–5382.
  • Wang, Y., Blandino G., and Givol D.. 1999. Induced p21waf expression in H1299 cell line promotes cell senescence and protects against cytotoxic effect of radiation and doxorubicin. Oncogene 18:2643–2649.
  • Weinberg, R. A. 1995. The retinoblastoma protein and cell cycle control. Cell 81:323–330.
  • Wu, J., and Grunstein M.. 2000. 25 years after the nucleosome model: chromatin modifications. Trends Biochem. Sci. 25:619–623.
  • Xu, H. J., Zhou Y., Ji W., Perng G. S., Kruzelock R., Kong C. T., Bast R. C., Mills G. B., Li J., and Hu S. X.. 1997. Reexpression of the retinoblastoma protein in tumor cells induces senescence and telomerase inhibition. Oncogene 15:2589–2596.
  • Zhang, H. S., Gavin M., Dahiya A., Postigo A. A., Ma D., Luo R. X., Harbour J. W., and Dean D. C.. 2000. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101:79–89.
  • Zhang, Z. K., Davies K. P., Allen J., Zhu L., Pestell R. G., Zagzag D., and Kalpana G. V.. 2002. Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5. Mol. Cell. Biol. 22:5975–5988.
  • Zhu, J., Woods D., McMahon M., and Bishop J. M.. 1998. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12:2997–3007.
  • Zhu, L., Enders G., Lees J. A., Beijersbergen R. L., Bernards R., and Harlow E.. 1995. The pRB-related protein p107 contains two growth suppression domains: independent interactions with E2F and cyclin/cdk complexes. EMBO J. 14:1904–1913.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.