81
Views
151
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Receptor Clustering Is Involved in Reelin Signaling

, , , , , , , , , , , & show all
Pages 1378-1386 | Received 16 Jun 2003, Accepted 06 Nov 2003, Published online: 27 Mar 2023

REFERENCES

  • Andersen, O. M., Benhayon D., Curran T., and Willnow T. E.. 2003. Differential binding of ligands to the apolipoprotein E receptor 2. Biochemistry 42:9355–9364.
  • Arnaud, L., Ballif B. A., Forster E., and Cooper J. A.. 2003. Fyn tyrosine kinase is a critical regulator of Disabled-1 during brain development. Curr. Biol. 13:9–17.
  • Ballif, B. A., Arnaud L., and Cooper J. A.. 2003. Tyrosine phosphorylation of Disabled-1 is essential for Reelin-stimulated activation of Akt and Src family kinases. Mol. Brain Res. 117:152–159.
  • Beffert, U., Morfini G., Bock H. H., Reyna H., Brady S. T., and Herz J.. 2002. Reelin-mediated signaling locally regulates PKB/Akt and GSK-3β. J. Biol. Chem. 277:49958–49964.
  • Benhayon, D., Magdaleno S., and Curran T.. 2003. Binding of purified Reelin to ApoER2 and VLDLR mediates tyrosine phosphorylation of Disabled-1. Mol. Brain Res. 112:33–45.
  • Bock, H. H., and Herz J.. 2003. Reelin activates SRC family tyrosine kinases in neurons. Curr. Biol. 13:18–26.
  • Bock, H. H., Jossin Y., Liu P., Forster E., May P., Goffinet A. M., and Herz J.. 2003. Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to Reelin signaling and is required for normal cortical lamination. J. Biol. Chem. 278:38772–38779.
  • Brandes, C., Kahr L., Stockinger W., Hiesberger T., Schneider W. J., and Nimpf J.. 2001. Alternative splicing in the ligand binding domain of mouse ApoE receptor-2 produces receptor variants binding Reelin but not alpha2-macroglobulin. J. Biol. Chem. 276:22160–22169.
  • Clackson, T., Yang W., Rozamus L. W., Hatada M., Amara J. F., Rollins C. T., Stevenson L. F., Magari S. R., Wood S. A., Courage N. L., Lu X., Cerasoli F., Gilman M., and Holt D. A.. 1998. Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc. Natl. Acad. Sci. USA 95:10437–10442.
  • Curran, T., and D'Arcangelo G.. 1998. Role of Reelin in the control of brain development. Brain Res. Rev. 26:285–294.
  • D'Arcangelo, G., Homayoundi R., Keshvara L., Rice D. S., Sheldon M., and Curran T.. 1999. Reelin is a ligand for lipoprotein receptors. Neuron 24:471–479.
  • D'Arcangelo, G., Miao G. G., Chen S. C., Soares H. D., Morgan J. I., and Curran T.. 1995. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723.
  • Dulabon, L., Olson E. C., Taglienti M. G., Eisenhuth S., McGrath B., Walsh C. A., Kreidberg J. A., and Anton E. S.. 2000. Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27:33–44.
  • Hiesberger, T., Trommsdorff M., Howell B. W., Goffinet A., Mumby M. C., Cooper J. A., and Herz J.. 1999. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosin phosphorylation of the adaptor protein disabled-1 and modulates tau phosphorylation. Neuron 24:481–489.
  • Howell, B. W., Gertler F. B., and Cooper J. A.. 1997. Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. EMBO J. 16:121–132.
  • Howell, B. W., Hawkes R., Soriano P., and Cooper J. A.. 1997. Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389:733–737.
  • Howell, B. W., Herrick T. M., and Cooper J. A.. 1999. Reelin-induced tryosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev. 13:643–648.
  • Howell, B. W., Herrick T. M., Hildebrand J. D., Zhang Y., and Cooper J. A.. 2000. Dab1 tyrosine phosphorylation sites relay positional signals during mouse brain development. Curr. Biol. 10:877–885.
  • Howell, B. W., Lanier L. M., Frank R., Gertler F. B., and Cooper J. A.. 1999. The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids. Mol. Cell. Biol. 19:5179–5188.
  • Keshvara, L., Benhayon D., Magdaleno S., and Curran T.. 2001. Identification of Reelin-induced sites of tyrosyl phosphorylation on disabled 1. J. Biol. Chem. 276:16008–16014.
  • Koch, S., Strasser V., Hauser C., Fasching D., Brandes C., Bajari T. M., Schneider W. J., and Nimpf J.. 2002. A secreted soluble form of ApoE receptor 2 acts as dominant negative receptor and inhibits Reelin signaling. EMBO J. 21:5996–6004.
  • Kubo, K., Mikoshiba K., and Nakajima K.. 2002. Secreted Reelin molecules form homodimers. Neurosci. Res. 43:381–388.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of the head of the bacteriophage T4. Nature 227:680–685.
  • Lindstedt, K. A., Mahon M. G., Foisner R., Hermann M., Nimpf J., and Schneider W. J.. 1997. Receptor-associated protein in an oviparous species is correlated with the expression of a receptor variant. J. Biol. Chem. 272:30221–30227.
  • Nakajima, K., Mikoshiba K., Miyata T., Kudo C., and Ogawa M.. 1997. Disruption of hippocampal development in vivo by CR-50 mAb against Reelin. Proc. Natl. Acad. Sci. USA 94:8196–8201.
  • Ogawa, M., Miyata T., Nakajima K., Yagyu K., Seike M., Ikenaka K., Yamamoto H., and Mikoshiba K.. 1995. The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14:899–912.
  • Ohshima, T., Ogawa M., Veeranna, Hirasawa M., Longenecker G., Ishiguro K., Pant H. C., Brady R. O., Kulkarni A. B., and Mikoshiba K.. 2001. Synergistic contributions of cyclin-dependant kinase 5/p35 and Reelin/Dab1 to the positioning of cortical neurons in the developing mouse brain. Proc. Natl. Acad. Sci. USA 98:2764–2769.
  • Ohshima, T., Ward J. M., Huh C. G., Longenecker G., Veeranna, Pant H. C., Brady R. O., Martin L. J., and Kulkarni A. B.. 1996. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl. Acad. Sci. USA 93:11173–11178.
  • Pramatarova, A., Ochalski P. G., Chen K., Gropman A., Myers S., Min K. T., and Howell B. W.. 2003. Nck beta interacts with tyrosine-phosphorylated disabled 1 and redistributes in Reelin-stimulated neurons. Mol. Cell. Biol. 23:7210–7221.
  • Rice, D. S., Sheldon M., D'Arcangelo G., Nakajima K., Goldowitz D., and Curran T.. 1998. Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125:3719–3729.
  • Senzaki, K., Ogawa M., and Yagi T.. 1999. Proteins of the CNR family are multiple receptors for Reelin. Cell 99:635–647.
  • Sheldon, M., Rice D. S., D'Arcangelo G., Yoneshima H., Nakajima K., Mikoshiba K., Howell B. W., Cooper J. A., Goldowitz D., and Curran T.. 1997. Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730–733.
  • Stockinger, W., Hengstschläger-Ottnad E., Novak S., Matus A., Hüttinger M., Bauer J., Lassmann H., Schneider W. J., and Nimpf J.. 1998. The LDL receptor gene family: differential expression of two α2-macroglobulin receptors in the brain. J. Biol. Chem. 273:32213–32221.
  • Trommsdorff, M., Borg J.-P., Margolis B., and Herz J.. 1998. Interaction of cytosolic adaptor proteins with neuronal apoE receptors and the amyloid presursor proteins. J. Biol. Chem. 273:33556–33565.
  • Trommsdorff, M., Gotthardt M., Hiesberger T., Shelton J., Stockinger W., Nimpf J., Hammer R., Richardson J. A., and Herz J.. 1999. Reeler/Disabled-like disruption of neuronal migration in knock out mice lacking the VLDL receptor and apoE receptor-2. Cell 97:689–701.
  • Utsunomiya-Tate, N., Kubo K., Tate S., Kainosho M., Katayama E., Nakajima K., and Mikoshiba K.. 2000. Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody. Proc. Natl. Acad. Sci. USA 97:9729–9734.
  • Ware, M. L., Fox J. W., Gonzalez J. L., Davis N. M., Lambert de Rouvroit C., Russo C. J., Chua S. C., Jr., Goffinet A. M., and Walsh C. A.. 1997. Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19:239–249.
  • Weeber, E. J., Beffert U., Jones C., Christian J. M., Forster E., Sweatt J. D., and Herz J.. 2002. Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277:39944–39952.
  • Willnow, T. E. 1998. Receptor-associated protein (RAP): a specialized chaperone for endocytic receptors. Biol. Chem. 379:1025–1031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.