20
Views
45
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Involvement of Rho Family GTPases in p19Arf- and p53-Mediated Proliferation of Primary Mouse Embryonic Fibroblasts

&
Pages 1426-1438 | Received 01 Oct 2003, Accepted 30 Oct 2003, Published online: 27 Mar 2023

REFERENCES

  • Aznar, S., and Lacal J. C.. 2001. Rho signals to cell growth and apoptosis. Cancer Lett. 165:1–10.
  • Balint, E., and Vousden K. H.. 2001. Activation and activities of the p53 tumour suppressor protein. Br. J. Cancer 85:1813–1823.
  • Bar-Sagi, B., and Hall A.. 2000. Ras and Rho GTPases: a family reunion. Cell 103:227–238.
  • Bishop, A. L., and Hall A.. 2000. Rho GTPases and their effector proteins. Biochem. J. 348:241–255.
  • Boettner, B., and Van Aelst L.. 2002. The role of Rho GTPases in disease development. Gene 286:155–174.
  • Clark, E. A., Golub T. R., Lander E. S., and Hynes R. O.. 2000. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535.
  • Etienne-Manneville, S., and Hall A.. 2002. Rho GTPases in cell biology. Nature 420:629–635.
  • Ferbeyre, G., de Stanchina E., Lin A. W., Querido E., McCurrach M. E., Hannon G. J., and Lowe S. W.. 2002. Oncogenic ras and p53 cooperate to induce cellular senescence. Mol. Cell. Biol. 22:3497–3508.
  • Fritz, G., Just I., and Kaina B.. 1999. Rho GTPases are over-expressed in human tumors. Int. J. Cancer 81:682–687.
  • Fujisawa, K., Madaule P., Ishizaki T., Watanabe G., Bito H., Saito Y., Hall A., and Narumiya S.. 1998. Different regions of Rho determine Rho-selective binding of different classes of Rho target molecules. J. Biol. Chem. 273:18943–18949.
  • Gu, Y., Filippi M-D., Siefring J. E., Williams E. P., Jasti A., R., Prabhakar, Kwiatkowski D. J., and Williams D. A.. The highly related Rho GTPases, Rac1 and Rac2, separately control hematopoietic cell survival and cycle progression, but together regulate adhesion and migration. Science, in press.
  • Guo, F. K., Gao Y., Wang L., and Zheng Y.. 2003. p19Arf-p53 tumor suppressor pathway regulates cell motility by suppression of phosphoinositide 3-kinase and Rac1 GTPase activities. J. Biol. Chem. 278:14414–14419.
  • Hahn, W. C., and Weinberg R. A.. 2002. Modelling the molecular circuitry of cancer. Nat. Rev. Cancer 2:331–341.
  • Joyce, D., Bouzahzah B., Fu M., Albanese C., D'Amico M., Steer J., Klein J. U., Lee R. J., Segall J. E., Westwick J. K., Der C. J., and Pestell R. G.. 1999. Integration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factor-B-dependent pathway. J. Biol. Chem. 274:25245–25249.
  • Kaibuchi, K., Kuroda S., Fukata M., and Nakagawa M.. 1999. Regulation of cadherin-mediated cell-cell adhesion by the Rho family GTPases. Curr. Opin. Cell Biol. 11:591–596.
  • Kamijo, T., Zindy F., Roussel M. F., Quelle D. E., Downing J. R., Ashmun R. A., Grosveld G., and Sherr C. J.. 1997. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91:649–659.
  • Khosravi-Far, R., Solski P. A., Clark G. J., Kinch M. S., and Der C. J.. 1995. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell. Biol. 15:6443–6453.
  • Levine, A. J. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331.
  • Li, R., Debreceni B., Jia B., Gao Y., Tigyi G., and Zheng Y.. 1999. Localization of the PAK1-, WASP-, and IQGAP1-specifying regions of the small GTPase Cdc42. J. Biol. Chem. 274:29648–29654.
  • Liliental, J., Moon S. Y., Lesche R., Mamillapalli R., Gavrilova N., Zheng Y., Sun H., and Wu H.. 2000. Genetic deletion of the PTEN tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr. Biol. 10:401–404.
  • Lin, R., Cerione R. A., and Manor D.. 1999. Specific contributions of the small GTPases Rho, Rac, and Cdc42 to Dbl transformation. J. Biol. Chem. 274:23633–23641.
  • Ma, P., Magut M., Chen X., and Chen C.-Y.. 2002. p53 is necessary for the apoptotic response mediated by a transient increase of Ras activity. Mol. Cell. Biol. 22:2928–2938.
  • Malliri, A., van der Kammen R. A., Clark K., van der Valk M., Michiels F., and Collard J. G.. 2002. Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature 417:867–871.
  • McKeller, R. N., Fowler J. L., Cunningham J. J., Warner N., Smeyne R. J., Zindy F., and Skapek S. X.. 2002. The Arf tumor suppressor gene promotes hyaloid vascular regression during mouse eye development. Proc. Natl. Acad. Sci. USA 99:3848–3853.
  • Mira, J. P., Benard V., Groffen J., Sanders L. C., and Knaus U. G.. 2000. Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by p21-activated kinase-dependent pathway. Proc. Natl. Acad. Sci. USA 97:185–189.
  • Montaner, S., Perona R., Saniger L., and Lacal J. C.. 1998. Multiple signaling pathways lead to the activation of the nuclear factor κB by the Rho family of GTPases. J. Biol. Chem. 273:12779–12785.
  • Olson, M. F., Ashworth A., and Hall A.. 1995. An essential role for rho, rac, and cdc42 GTPases in cell cycle progression through G1. Science 269:1270–1272.
  • Olson, M. J., Paterson H. F., and Marshall C. J.. 1998. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature 394:295–299.
  • Perona, R., Montaner S., Saniger L., Sanchez P. I., Bravo R., and Lacal J. C.. 1997. Activation of the nuclear factor-κB by Rho, Rac, and Cdc42 proteins. Genes Dev. 11:463–475.
  • Preudhomme, C., Roumier C., Hildebrand M. P., Dallery-Prudhomme E., Lantoine D., Lai J. L., Daudignon A., Adenis C., Bauters F., Fenaux P., Kerckaert J. P., and Galiegue-Zouitina S.. 2000. Nonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin's lymphoma and multiple myeloma. Oncogene 19:2023–2032.
  • Qiu, R., Chen J., Kirn D., McCormick F., and Symons M.. 1995. An essential role for Rac in Ras transformation. Nature 374:457–459.
  • Qiu, R., Chen J., McCormick F., and Symons M.. 1995. A role for Rho in Ras transformation. Proc. Natl. Acad. Sci. USA 92:11781–11785.
  • Qiu, R., Abo A., McCormick F., and Symons M.. 1997. Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation. Mol. Cell. Biol. 17:3449–3458.
  • Rocha, S., Campbell K. J., and Perkins N. D.. 2003. p53- and Mdm2-independent repression of NF-κB transactivation by the ARF tumor suppressor. Mol. Cell 12:15–25.
  • Roux, P., Gauthier-Rouviere C., Doucet-Brutin S., and Fort P.. 1997. The small GTPases Cdc42Hs, Rac1 and RhoG delineate Raf-independent pathways that cooperate to transform NIH3T3 cells. Curr. Biol. 7:629–637.
  • Ryan, K. M., Ernst M. K., Rice N. R., and Vousden K. H.. 2000. Role of NF-κB in p53-mediated programmed cell death. Nature 404:892–897.
  • Sahai, E., and Marshall C. J.. 2002. Rho-GTPases and cancer. Nat. Rev. Cancer 2:133–142.
  • Sahai, E., Alberts A. S., and Treisman R.. 1998. RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. EMBO J. 17:1350–1361.
  • Sahia, E., Ishizaki T., Narumiya S., and Treisman R.. 1999. Transformation mediated by RhoA requires activity of ROCK kinases. Curr. Biol. 9:136–145.
  • Schnelzer, A., Prechtel D., Knaus U., Dehne K., Gerhard M., Graeff H., Harbeck N., Schmitt M., and Lengyel E.. 2000. Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform. Oncogene 19:3013–3020.
  • Schwartz, M. A., and Shattil S. J.. 2000. Signaling networks linking integrins and rho family GTPases. Trends Biochem. Sci. 25:388–391.
  • Serrano, M., Lin A. W., McCurrach M. E., Beach D., and Lowe S. W.. 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602.
  • Sherr, C. J. 2001. The Ink4a/ARF network in tumor suppression. Nat. Rev. Mol. Cell Biol. 2:731–737.
  • Subauste, M. C., Von Herrath M., Benard V., Chamberlain C. E., Chuang T. S., Chu K., Bokoch G. M., and Hahn K. M.. 2000. Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. J. Biol. Chem. 275:9725–9733.
  • Suwa, H., Ohshio G., Imamura T., Watanabe G., Arii S., Imamura M., Narumiya S., Hiai H., and Fukumoto M.. 1998. Overexpression of RhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. Br. J. Cancer 77:147–152.
  • Van Aelst, L., and D'Souza-Schorey C.. 1997. Rho GTPases and signaling networks. Genes Dev. 11:2295–2322.
  • Vidal, A., Millard S. S., Miller J. P., and Koff A.. 2002. Rho activity can alter the translation of p27 mRNA and is important for RasV12-induced transformation in a manner dependent on p27 status. J. Biol. Chem. 277:16433–16440.
  • Webster, G. A., and Perkins N. D.. 1999. Transcriptional cross talk between NF-κB and p53. Mol. Cell. Biol. 19:3485–3495.
  • Welsh, C. F., et. al. 2001. Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat. Cell Biol. 3:950–957.
  • Westwick, J. K., Lee R. J., Lambert Q. T., Symons M., Pestell R. G., Der C. J., and Whitehead I. P.. 1998. Transforming potential of Dbl family proteins correlates with transcription from the cyclin D1 promoter but not with activation of Jun NH2-terminal kinase, p38/Mpk2, serum response factor, or c-Jun. J. Biol. Chem. 273:16739–16747.
  • Westwick, J. K., Lambert Q. T., Clark G. J., Symons M., Van Aelst L., Pestell R. G., and Der C. J.. 1997. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol. 17:1324–1335.
  • Whitehead, I. P., Lambert Q. T., Glaven J. A., Abe K., Rossman K. L., Mahon G. M., Trzaskos J. M., Kay R., Campbell S. L., and Der C. J.. 1999. Dependence of Dbl and Dbs transformation on MEK and NF-κB activation. Mol. Cell. Biol. 19:7759–7770.
  • Wu, W. J., Tu S., and Cerione R. A.. 2003. Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell 114:715–725.
  • Yoshioka, K., Matsumura F., Akedo H., and Itoh K.. 1998. Small GTP-binding protein Rho stimulates the actomyosin system, leading to invasion of tumor cells. J. Biol. Chem. 273:5146–5154.
  • Zhao, R., Gish K., Murphy M., Yin Y., Notterman D., Hoffman W. H., Tom E., Mack D. H., and Levine A. J.. 2000. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 14:981–993.
  • Zheng, Y. 2001. Dbl family guanine nucleotide exchange factors. Trends Biochem. Sci. 26:724–732.
  • Zindy, F., Eischen C. M., Randle D. H., Kamijo T., Cleveland J. L., Sherr C. J., and Roussel M. F.. 1998. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12:2424–2433.
  • Zohn, I. M., Campbell S. L., Khosravi-Far R., Rossman K. L., and Der C. J.. 1998. Rho family proteins and Ras transformation: the RHOad less traveled gets congested. Oncogene 17:1415–1438.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.