25
Views
53
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Cdc6 Chromatin Affinity Is Unaffected by Serine-54 Phosphorylation, S-Phase Progression, and Overexpression of Cyclin A

&
Pages 1614-1627 | Received 08 Oct 2003, Accepted 21 Nov 2003, Published online: 27 Mar 2023

REFERENCES

  • Alcasabas, A. A., Osborn A. J., Bachant J., Hu F., Werler P. J., Bousset K., Furuya K., Diffley J. F., Carr A. M., and Elledge S. J.. 2001. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat. Cell Biol. 3:958–965.
  • Bell, S. P., and Dutta A.. 2002. DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71:333–374.
  • Bell, S. P., and Stillman B.. 1992. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357:128–134.
  • Brush, G. S., and Kelly T. J.. 2000. Phosphorylation of the replication protein A large subunit in the Saccharomyces cerevisiae checkpoint response. Nucleic Acids Res. 28:3725–3732.
  • Bueno, A., and Russell P.. 1992. Dual functions of CDC6: a yeast protein required for DNA replication also inhibits nuclear division. EMBO J. 11:2167–2176.
  • Clay-Farrace, L., Pelizon C., Santamaria D., Pines J., and Laskey R. A.. 2003. Human replication protein Cdc6 prevents mitosis through a checkpoint mechanism that implicates Chk1. EMBO J. 22:704–712.
  • Cocker, J. H., Piatti S., Santocanale C., Nasmyth K., and Diffley J. F. X.. 1996. An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379:180–182.
  • Coleman, T. R., Carpenter P. B., and Dunphy W. G.. 1996. The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Cell 87:53–63.
  • Coverley, D., Laman H., and Laskey R. A.. 2002. Distinct roles for cyclins E and A during DNA replication complex assembly and activation. Nat. Cell Biol. 4:523–528.
  • Coverley, D., Pelizon C., Trewick S., and Laskey R. A.. 2000. Chromatin-bound Cdc6 persists in S and G2 phases in human cells, while soluble Cdc6 is destroyed in a cyclin A-cdk2 dependent process. J. Cell Sci. 113:1929–1938.
  • Delmolino, L. M., Saha P., and Dutta A.. 2001. Multiple mechanisms regulate subcellular localization of human CDC6. J. Biol. Chem. 276:26947–26954.
  • Desdouets, C., Santocanale C., Drury L. S., Perkins G., Foiani M., Plevani P., and Diffley J. F. X.. 1998. Evidence for a Cdc6p-independent mitotic resetting event involving DNA polymerase alpha. EMBO J. 17:4139–4146.
  • Dimitrova, D. S., Prokhorova T. A., Blow J. J., Todorov I. T., and Gilbert D. M.. 2002. Mammalian nuclei become licensed for DNA replication during late telophase. J. Cell Sci. 115:51–59.
  • Dimitrova, D. S., Todorov I. T., Melendy T., and Gilbert D. M.. 1999. Mcm2, but not RPA, is a component of the mammalian early G1-phase prereplication complex. J. Cell Biol. 146:709–722.
  • Fujita, M., Ishimi Y., Nakamura H., Kiyono T., and Tsurumi T.. 2002. Nuclear organization of DNA replication initiation proteins in mammalian cells. J. Biol. Chem. 277:10354–10361.
  • Fujita, M., Yamada C., Goto H., Yokoyama N., Kuzushima K., Inagaki M., and Tsurumi T.. 1999. Cell cycle regulation of human CDC6 protein. Intracellular localization, interaction with the human mcm complex, and CDC2 kinase-mediated hyperphosphorylation. J. Biol. Chem. 274:25927–25932.
  • Hua, X. H., and Newport J.. 1998. Identification of a preinitiation step in DNA replication that is independent of origin recognition complex and Cdc6, but dependent on Cdk2. J. Cell Biol. 140:271–281.
  • Jiang, W., Wells N. J., and Hunter T.. 1999. Multistep regulation of DNA replication by Cdk phosphorylation of HsCdc6. Proc. Natl. Acad. Sci. USA 96:6193–6198.
  • Krude, T., Musahl C., Laskey R. A., and Knippers R.. 1996. Human replication proteins hCdc21, hCdc46, and P1Mcm3 bind chromatin uniformly before S-phase and are displaced locally during DNA replication. J. Cell Sci. 109:309–318.
  • Li, G., Sudlow G., and Belmont A. S.. 1998. Interphase cell cycle dynamics of a late-replicating, heterochromatic homogeneously staining region: precise choreography of condensation/decondensation and nuclear positioning. J. Cell Biol. 140:975–989.
  • Liang, C., Weinreich M., and Stillman B.. 1995. ORC and Cdc6p interact and determine the frequency of initiation of DNA replication in the genome. Cell 81:667–676.
  • Madine, M. A., Khoo C.-Y., Mills A. D., Musahl C., and Laskey R. A.. 1995. The nuclear envelope prevents reinitiation of replication by regulating the binding of MCM3 to chromatin in Xenopus egg extracts. Curr. Biol. 5:1270–1279.
  • Mendez, J., and Stillman B.. 2000. Chromatin association of human origin recognition complex, Cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol. Cell. Biol. 20:8602–8612.
  • Mimura, S., and Takisawa H.. 1998. Xenopus Cdc45-dependent loading of DNA polymerase alpha onto chromatin under the control of S-phase Cdk. EMBO J. 17:5699–5707.
  • O'Keefe, R. T., Henderson S. C., and Spector D. L.. 1992. Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences. J. Cell Biol. 116:1095–1110.
  • Okuno, Y., McNairn A. J., den Elzen N., Pines J., and Gilbert D. M.. 2001. Stability, chromatin association and functional activity of mammalian pre-replication complex proteins during the cell cycle. EMBO J. 20:4263–4277.
  • Pelizon, C., Madine M. A., Romanowski P., and Laskey R. A.. 2000. Unphosphorylatable mutants of Cdc6 disrupt its nuclear export but still support DNA replication once per cell cycle. Genes Dev. 14:2526–2533.
  • Petersen, B. O., Lukas J., Sorensen C. S., Bartek J., and Helin K.. 1999. Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. EMBO J. 18:396–410.
  • Petersen, B. O., Wagener C., Marinoni F., Kramer E. R., Melixetian M., Denchi E. L., Gieffers C., Matteucci C., Peters J. M., and Helin K.. 2000. Cell cycle- and cell growth-regulated proteolysis of mammalian CDC6 is dependent on APC-CDH1. Genes Dev. 14:2330–2343.
  • Piatti, S., Bohm T., Cocker J. H., Diffley J. F. X., and Nasmyth K.. 1996. Activation of S-phase-promoting CDKs in late G1 defines a ‘point of no return' after which Cdc6 synthesis cannot promote DNA replication in yeast. Genes Dev. 10:1516–1531.
  • Piatti, S., Lengauer C., and Nasmyth K.. 1995. Cdc6 is an unstable protein whose de novo synthesis in G1 is important for the onset of S phase and for preventing a ‘reductional' anaphase in the budding yeast Saccharomyces cerevisiae. EMBO J. 14:3788–3799.
  • Romanowski, P., Madine M. A., and Laskey R. A.. 1996. XMcm7, a novel member of the Xenopus MCM family, interacts with XMcm3 and colocalizes with it throughout replication. Proc. Natl. Acad. Sci. USA 93:10189–10194.
  • Saha, P., Chen J., Thome K. C., Lawlis S. J., Hou Z.-H., Hendricks M., Parvin J. D., and Dutta A.. 1998. Human CDC6/Cdc18 associates with Orc1 and cyclin-Cdk and is selectively eliminated from the nucleus at the onset of S phase. Mol. Cell. Biol. 18:2758–2767.
  • Santocanale, C., and Diffley J. F. X.. 1996. ORC- and Cdc6-dependent complexes at active and inactive chromosomal replication origins in Saccharomyces cerevisiae. EMBO J. 15:6671–6679.
  • Stoeber, K., Mills A. D., Kubota Y., Krude T., Romanowski P., Marheineke K., Laskey R. A., and Williams G. H.. 1998. Cdc6 protein causes premature entry into S phase in a mammalian cell-free system. EMBO J. 17:7219–7229.
  • Stoeber, K., Tlsty T. D., Happerfield L., Thomas G. A., Romanov S., Bobrow L., Williams E. D., and Williams G. H.. 2001. DNA replication licensing and human cell proliferation. J. Cell Sci. 114:2027–2041.
  • Tada, S., Chong J. P., Mahbubani H. M., and Blow J. J.. 1999. The RLF-B component of the replication licensing system is distinct from Cdc6 and functions after Cdc6 binds to chromatin. Curr. Biol. 9:211–214.
  • Tada, S., Li A., Maiorano D., Mechali M., and Blow J. J.. 2001. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat. Cell Biol. 3:107–113.
  • Tanaka, S., and Diffley J. F.. 2002. Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nat. Cell Biol. 4:198–207.
  • Tanaka, T., Knapp D., and Nasmyth K.. 1997. Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell 90:649–660.
  • Todorov, I. T., Attaran A., and Kearsey S. E.. 1995. BM28, a human member of the MCM2-3-5 family, is displaced from chromatin during DNA replication. J. Cell Biol. 129:1433–1445.
  • Vaziri, C., Saxena S., Jeon Y., Lee C., Murata K., Machida Y., Wagle N., Hwang D. S., and Dutta A.. 2003. A p53-dependent checkpoint pathway prevents rereplication. Mol. Cell 11:997–1008.
  • Walker, J. E., Saraste M., Runswick M. J., and Gay N. J.. 1982. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945–951.
  • Walter, J., and Newport J.. 2000. Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Mol. Cell 5:617–627.
  • Weinreich, M., Liang C., and Stillman B.. 1999. The Cdc6p nucleotide-binding motif is required for loading mcm proteins onto chromatin. Proc. Natl. Acad. Sci. USA 96:441–446.
  • Williams, R. S., Shohet R. V., and Stillman B.. 1997. A human protein related to yeast Cdc6p. Proc. Natl. Acad. Sci. USA 94:142–147.
  • Wohlschlegel, J. A., Dwyer B. T., Dhar S. K., Cvetic C., Walter J. C., and Dutta A.. 2000. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290:2309–2312.
  • Yan, Z., DeGregori J., Shohet R., Leone G., Stillman B., Nevins J. R., and Williams R. S.. 1998. Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells. Proc. Natl. Acad. Sci. USA 95:3603–3608.
  • Ye, Q., Hu Y.-F., Zhong H., Nye A. C., Belmont A. S., and Li R.. 2001. BRCA1-induced large-scale chromatin unfolding and allele-specific effects of cancer-predisposing mutations. J. Cell Biol. 155:911–921.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.