20
Views
32
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Mutant MyoD Lacking Cdc2 Phosphorylation Sites Delays M-Phase Entry

, , , , , , & show all
Pages 1809-1821 | Received 26 Feb 2003, Accepted 15 Nov 2003, Published online: 27 Mar 2023

REFERENCES

  • Bergstrom, D. A., and Tapscott S. J.. 2001. Molecular distinction between specification and differentiation in the myogenic basic helix-loop-helix transcription factor family. Mol. Cell. Biol. 21:2404–2412.
  • Bergstrom D. A., Penn B. H., Strand A., Perry R. L., Rudnicki M. A., and Tapscott S. J.. 2002. Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol. Cell 9:587–600.
  • Breitschopf, K., Bengal E., Ziv T., Admon A., and Ciechanover A.. 1998. A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J. 17:5964–5973.
  • Bunz, F., Dutriaux A., Lengauer C., Waldman T., Zhou S., Brown J. P., Sedivy J. M., Vogelstein B., and Kinzler K. W.. 1998. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282:1497–1501.
  • Chang, B.-D., Watanabe K., Broude E. V., Fang J., Poole J. C., Kalinichenko T. V., and Roninson I. B.. 2000. Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc. Natl. Acad. Sci. USA 97:4291–4296.
  • Cheng, M., Olivier P., Diehl J. A., Fero M., Roussel M. F., Roberts J. M., and Sherr C. J.. 1999. The p21Cip1 and p27Kip1 CDK ′inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 18:1571–1583.
  • Clute, P., and Pines J.. 1999. Temporal and spatial control of cyclin B1 destruction in metaphase. Nat. Cell Biol. 2:82–87.
  • Davis, F. M., Tsao T. Y., Fowler S. K., and Rao P. N.. 1983. Monoclonal antibodies to mitotic cells. Proc. Natl. Acad. Sci. USA 10:2926–2930.
  • Davis, R. L., Cheng P., Lassar A., and Weintraub H.. 1990. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60:733–746.
  • Dulic, V., Stein G. H., Far D. F., and Reed S. I.. 1998. Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Mol. Cell. Biol. 18:546–557.
  • Edmondson D. G., and Olson E. N.. 1993. Helix-loop-helix proteins as regulators of muscle-specific transcription. J. Biol. Chem. 268:755–758.
  • Flatt, P. M., Tang L. J., Scatena C. D., Szak S. T., and Pietenpol J. A.. 2000. p53 regulation of G2 checkpoint is retinoblastoma protein dependent. Mol. Cell. Biol. 20:4210–4223.
  • Gieffers, C., Peters B. H., Kramer E. R., Dotti C. G., and Peters J. M.. 1999. Expression of the CDH1-associated form of the anaphase-promoting complex in postmitotic neurons. Proc. Natl. Acad. Sci. USA 96:11317–11422.
  • . Glotzer, M., Murray A. W., and Kirschner M. W.. 1991. Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138.
  • Gottesfeld, J. M., Wolf V. J., Dang T., Forbes D. J., and Hartl P.. 1994. Mitotic repression of RNA polymerase III transcription in vitro mediated by phosphorylation of a TFIIIB component. Science 263:81–84.
  • Guo, K., and Walsh K.. 1997. Inhibition of myogenesis by multiple cyclin-Cdk complexes. Coordinate regulation of myogenesis and cell cycle activity at the level of E2F. J. Biol. Chem. 272:791–797.
  • Halevy, O., Novitch B. G., Spicer D. B., Skapek S. X., Rhee J., Hannon G. J., Beach D., and Lassar A. B.. 1995. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267:1018–1021.
  • Harper, J. W., Elledge S. J., Keyomarsi K., Dynlacht B., Tsai L. H., Zhang P., Dobrowolski S., Bai S., Connell-Crowley L., Swindell E., et al. 1995. Inhibition of cyclin-dependent kinases by p21. Mol. Biol. Cell 6:387–400.
  • Harper, J. W., and Elledge S. J.. 1996. Cdk inhibitors in development and cancer. Curr. Opin. Genet. 6:56–64.
  • Kitzmann, M., Carnac G., Vandromme M., Primig M., Lamb N. J. C., and Fernandez A.. 1998. The muscle regulatory factors MyoD and Myf-5 undergo distinct cell cycle-specific expression in muscle cells. J. Cell Biol. 142:1447–1459.
  • Kitzmann, M., Vandromme M., Schaeffer V., Carnac G., Labbe J.-C., Lamb N., and Fernandez A.. 1999. cdk1- and cdk2-mediated phosphorylation of MyoD Ser200 in growing C2 myoblasts: role in modulating MyoD half-life and myogenic activity. Mol. Cell. Biol. 19:3167–3176.
  • Kitzmann, M., and Fernandez A.. 2001. Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblasts. Cell. Mol. Life Sci. 58:571–579.
  • Lindon C., Montarras D., and Pinset C.. 1998. Cell cycle-regulated expression of the muscle determination factor Myf5 in proliferating myoblasts. J. Cell Biol. 140:111–118.
  • Lindon, C., Albagli O., Domeyne P., Montarras D., and Pinset C.. 2000. Constitutive instability of muscle regulatory factor Myf5 is distinct from its mitosis-specific disappearance, which requires a D-box-like motif overlapping the basic domain. Mol. Cell. Biol. 20:8923–8932.
  • Mal, A., Sturniolo M., Schiltz R. L., Ghosh M. K., and Harter M. L.. 2001. A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. EMBO J. 20:1739–1753.
  • Martinez-Balbas, M. A., Dey M., Rabindran S. K., Ozato K., and Wu C.. 1995. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83:29–38.
  • Megeney, L. A., Kablar B., Garrett K., Anderson J. E., and Rudnicki M. A.. 1996. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev. 10:1173–1183.
  • Murre, C., McCaw P. S., Vaessin H., Caudy M., Jan L. Y., Jan Y. N., Cabrera C. V., Buskin J. N., Hauschka S. D., Lassar A. B., et al. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544.
  • Niculescu, A. B., III, Chen X., Smeets M., Hengst L., Prives C., and Reed S. I.. 1998. Effects of p21Cip1/Waf1 at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol. Cell. Biol. 18:629–643.
  • O'Connell, M., Walworth N., and Carr A.. 2000. The G2-phase DNA damage checkpoint. Trends Cell Biol. 7:296–303.
  • Olson, E. N., and Klein W. H.. 1994. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. 1:1–8.
  • Parker, S. B., Eichele G., Zhang P., Rawls A., Sands A., Bradley A., Olson E. N., Harper J. W., and Elledge S. J.. 1995. p53-independent expression of p21 CIP1 in muscle and other terminally differentiating cells. Science 267:1024–1027.
  • Passalaris, T. M., Benanti J. A., Gewin L., Kiyono T., and Galloway D. A.. 1999. The G2 checkpoint is maintained by redundant pathways. Mol. Cell. Biol. 19:5872–5881.
  • Polesskaya, A., Duquet A., Naguibneva I., Weise C., Vervisch A., Bengal E., Hucho F., Robin P., and Harel-Bellan A.. 2000. CREB-binding protein/p300 activates MyoD by acetylation. J. Biol. Chem. 275:34359–34364.
  • Puri, P. L., Sartorelli V., Yang X. J., Hamamori Y., Ogryzko V. V., Howard B. H., Kedes L., Wang J. Y., Graessmann A., Nakatani Y., and Levrero M.. 1997. Differential roles for p300 and PCAF acetyltransferases in muscle differentiation. Mol. Cell 1:35–45.
  • Reynaud, E. G., Pelpel K., Guillier M., Leibovitch M.-P., and Leibovitch S. A.. 1999. p57Kip2 stabilizes the MyoD protein by inhibiting cyclin E-Cdk2 kinase activity in growing myoblasts. Mol. Cell. Biol. 19:7621–7629.
  • Reynaud, E. G., Leibovitch M. P., Tintignac L. A. J., Pelpel K., Guillier M., and Leibovitch S. A.. 2000. Stabilization of MyoD by direct binding to p57Kip2. J. Biol. Chem. 275:18767–18776.
  • Roberts, S. B., Segil N., and Heintz N.. 1991. Differential phosphorylation of transcription factor Oct1 during the cell cycle. Science 253:1022–1026.
  • Sartorelli, V., Puri P. L., Hamamori Y., Ogryzko V., Chung G., Nakatani Y., Wang J. Y., and Kedes L.. 1999. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol. Cell 4:725–734.
  • Smits, V. A. J., Klompmaker R., Vallenius T., Rijksen G., Makela T. P., and Medema R. H.. 2000. p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J. Biol. Chem. 275:30638–30643.
  • Song, A., Wang Q., Goebl M. G., and Harrington M. A.. 1998. Phosphorylation of nuclear MyoD is required for its rapid degradation. Mol. Cell. Biol. 18:4994–4999.
  • Songyang, Z., Blechner S., Hoagland N., Hoekstra M. F., Piwnica-Worms H., and Cantley L. C.. 1994. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol. 4:973–982.
  • Taylor, W. R, and Stark G. R.. 2001. Regulation of the G2/M transition by p53. Oncogene 20:1803–1815.
  • Tintignac, L. A., Leibovitch M. P., Kitzmann M., Fernandez A., Ducommun B., Meijer L., and Leibovitch S. A.. 2000. CyclinE-Cdk2 phosphorylation-dependent degradation of MyoD in muscle cells. Exp. Cell Res. 259:300–307.
  • Weintraub, H. 1993. The MyoD family and myogenesis: redundancy, networks and thresholds. Cell 75:1241–1244.
  • Wyzykowski, J. C., Winata T. I., Mitin N., Taparowsky E. J., and Konieczny S. F.. 2002. Identification of novel MyoD gene targets in proliferating myogenic stem cells. Mol. Cell. Biol. 17:6199–6208.
  • Zhang, H., Hannon G. J., and Beach D.. 1994. p21-containing cyclin kinases exist in both active and inactive states. Genes Dev. 147:8–15.
  • Zhang, J.-M., Wei Q., Zhao X., and Paterson B. M.. 1999. Coupling of the cell cycle and myogenesis through the cyclin D1-dependent interaction of MyoD with cdk4. EMBO J. 18:926–933.
  • Zhang, J.-M., Zhao X., Wei Q., and Paterson B. M.. 1999. Direct inhibition of G1 cdk kinase activity by MyoD promotes myoblast cell cycle withdrawal and terminal differentiation. EMBO J. 18:6983–6993.
  • Zhang, P., Wong C., Liu D., Finegold M., Harper J. W., and Elledge S. J.. 1999. p21CIP1 and p57KIP2 control muscle differentiation at the myogenin step. Genes Dev. 13:213–224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.