43
Views
153
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Replication Stalling at Friedreich's Ataxia (GAA)n Repeats In Vivo

&
Pages 2286-2295 | Received 21 Nov 2003, Accepted 22 Dec 2003, Published online: 27 Mar 2023

REFERENCE

  • Bidichandani, S. I., Ashizawa T., and Patel P. I.. 1998. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am. J. Hum. Genet. 62:111–121.
  • Bowater, R. P., and Wells R. D.. 2001. The intrinsically unstable life of DNA triplet repeats associated with human hereditary disorders. Prog. Nucleic Acid Res. Mol. Biol. 66:159–202.
  • Brewer, B. J., and Fangman W. L.. 1987. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51:463–471.
  • Campuzano, V., Montermini L., Lutz Y., Cova L., Hindelag C., Jiralerspong S., Trottier Y., Kish S. J., Faucheux B., Trouillas P., Authier F. J., Durr A., Mandel J.-L., Vescovi A. L., Pandolfo M., and Koenig M.. 1997. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum. Mol. Genet. 6:1771–1780.
  • Campuzano, V., Montermini L., Molto M. D., Pianese L., Cossee M., Cavalcanti F., Monros E., Rodius F., Duclos F., Monticelli A., Zara F., Canizares J., Koutnikova H., Bidichandari S. I., Gellera C., Brice A., Trouillas P., De Michele G., Filla A., De Frutos R., Palau F., Patel P. I., Di Donato S., Mandel J.-L., Cocozza S., Koenig M., and Pandolfo M.. 1996. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427.
  • Cheung, I., Schertzer M., Rose A., and Lansdorp P. M.. 2002. Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA. Nat. Genet. 4:405–409.
  • Cossee, M., Schmitt M., Campuzano V., Reutenauer L., Moutou C., Mandel J. L., and Koenig M.. 1997. Evolution of the Friedreich's ataxia trinucleotide repeat expansion: founder effect and premutations. Proc. Natl. Acad. Sci. USA 94:7452–7457.
  • DePamphilis, M. L., and Wassarman P. M.. 1980. Replication of eukaryotic chromosomes: a close-up of the replication fork. Annu. Rev. Biochem. 49:627–666.
  • Frick, D. N., and Richardson C. C.. 2001. DNA primases. Annu. Rev. Biochem. 70:39–80.
  • Friedman, K. L., and Brewer B. J.. 1995. Analysis of replication intermediates by two-dimensional agarose gel electrophoresis. Methods Enzymol. 262:613–627.
  • Gacy, A. M., Goellner G. M., Spiro C., Chen X., Gupta G., Bradbury E. M., Dyer R. B., Mikesell M. J., Yao J. Z., Johnson A. J., Richter A., Melancon S. B., and McMurray C. T.. 1998. GAA instability in Friedreich's ataxia shares a common, DNA-directed and intraallelic mechanism with other trinucleotide diseases. Mol. Cell 1:583–593.
  • Grabczyk, E., and Usdin K.. 2000. The GAA*TTC triplet repeat expanded in Friedreich's ataxia impedes transcription elongation by T7 RNA polymerase in a length and supercoil dependent manner. Nucleic Acids Res. 28:2815–2822.
  • Grabczyk, E., and Usdin K.. 1999. Generation of microgram quantities of trinucleotide repeat tracts of defined length, interspersion pattern, and orientation. Anal. Biochem. 267:241–243.
  • Heidenfelder, B. L., Makhov A. M., and Topal M. D.. 2003. Hairpin formation in Friedreich's ataxia triplet repeat expansion. J. Biol. Chem. 278:2425–2431.
  • Iyer, R. R., and Wells R. D.. 1999. Expansion and deletion of triplet repeat sequences in Escherichia coli occur on the leading strand of DNA replication. J. Biol. Chem. 274:3865–3877.
  • Kopel, V., Pozner A., Baran N., and Manor H.. 1996. Unwinding of the third strand of a DNA triple helix, a novel activity of the SV40 large T-antigen helicase. Nucleic Acids Res. 24:330–335.
  • Krasilnikov, A. S., Podtelezhnikov A., Vologodskii A., and Mirkin S. M.. 1999. Large-scale effects of transcriptional DNA supercoiling in vivo. J. Mol. Biol. 292:1149–1160.
  • Krasilnikova, M. M., Samadashwily G. M., Krasilnikov A. S., and Mirkin S. M.. 1998. Transcription through a simple DNA repeat blocks replication elongation. EMBO J. 17:5095–5102.
  • Krasilnikova, M. M., Smirnova E. V., Krasilnikov A. S., and Mirkin S. M.. 2001. A new trick for an old dog: TraY binding to a homopurine-homopyrimidine run attenuates DNA replication. J. Mol. Biol. 313:271–282.
  • Labuda, M., Labuda D., Miranda C., Poirier J., Soong B. W., Barucha N. E., and Pandolfo M.. 2000. Unique origin and specific ethnic distribution of the Friedreich ataxia GAA expansion. Neurology 54:2322–2324.
  • Maine, I. P., and Kodadek T.. 1994. Efficient unwinding of triplex DNA by a DNA helicase. Biochem. Biophys. Res. Commun. 204:1119–1124.
  • Mariappan, S. V. S., Catasti P., Silks L. A., Bradbury E. M., and Gupta G.. 1999. The high-resolution structure of the triplex formed by the GAA/TTC triplet repeat associated with Friedreich's ataxia. J. Mol. Biol. 285:2035–2052.
  • McMurray, C. T. 1995. Mechanisms of DNA expansion. Chromosoma 104:2–13.
  • Mirkin, S. M., and Frank-Kamenetskii M. D.. 1994. H-DNA and related structures. Annu. Rev. Biophys. Biomol. Struct. 23:541–576.
  • Mirkin, S. M., and Smirnova E. V.. 2002. Positioned to expand. Nat. Genet. 31:5–6.
  • Ohshima, K., Kang S., Larson J. E., and Wells R. D.. 1996. Cloning, characterization, and properties of seven triplet repeat DNA sequences. J. Biol. Chem. 271:16773–16783.
  • Ohshima, K., Montermini L., Wells R. D., and Pandolfo M.. 1998. Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich's ataxia gene on transcription and replication in vivo. J. Biol. Chem. 273:14588–14595.
  • Ohshima, K., and Wells R. D.. 1997. Hairpin formation during DNA synthesis primer realignment in vitro in triplet repeat sequences from human hereditary disease genes. J. Biol. Chem. 272:16798–16806.
  • Pandolfo, M. 1999. Molecular pathogenesis of Friedreich ataxia. Arch. Neurol. 56:1201–1208.
  • Patel, P. I., and Isaya G.. 2001. Friedreich ataxia: from GAA triplet-repeat expansion to frataxin deficiency. Am. J. Hum. Genet. 69:15–24.
  • Pelletier, R., Krasilnikova M. M., Samadashwily G. M., Lahue R. S., and Mirkin S. M.. 2003. Replication and expansion of trinucleotide repeats in yeast. Mol. Cell. Biol. 23:1349–1357.
  • Sakamoto, N., Chastain P. D., Parniewski P., Oshima K., Pandolfo M., Griffith J. D., and Wells R. D.. 1999. Sticky DNA: self association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich's ataxia. Mol. Cell 3:465–475.
  • Samadashwily, G. M., Dayn A., and Mirkin S. M.. 1993. Suicidal nucleotide sequences for DNA polymerization. EMBO J. 12:4975–4983.
  • Samadashwily, G. M., and Mirkin S. M.. 1994. Trapping DNA polymerases using triplex-forming oligodeoxyribonucleotides. Gene 149:127–136.
  • Samadashwily, G. M., Raca G., and Mirkin S. M.. 1997. Trinucleotide repeats affect DNA replication in vivo. Nat. Genet. 17:298–304.
  • Sambrook, J., Fritsch E. F., and Maniatis T.. 1989. Molecular cloning: a laboratory manual—2nd ed. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Usdin, K., and Grabczyk E.. 2000. DNA repeat expansions and human disease. Cell. Mol. Life Sci. 57:914–931.
  • Vetcher, A. A., Napierala M., Iyer R. R., Chastain P. D., Griffith J. D., and Wells R. D.. 2002. Sticky DNA, a long GAA · GAA · TTC triplex that is formed intramolecularly, in the sequence of intron 1 of the frataxin gene. J. Biol. Chem. 277:39217–39227.
  • Wold, M. S. 1997. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66:61–92.
  • Youkum, R. R., Hanley S., West R., and Ptashne M.. 1984. Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1985–1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.