71
Views
203
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Forkhead Box M1B Transcriptional Activity Requires Binding of Cdk-Cyclin Complexes for Phosphorylation-Dependent Recruitment of p300/CBP Coactivators

, &
Pages 2649-2661 | Received 15 Aug 2003, Accepted 09 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Arany, Z., Sellers W. R., Livingston D. M., and Eckner R.. 1994. E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell 77:799–800.
  • Biggs, W. H., III, Meisenhelder J., Hunter T., Cavenee W. K., and Arden K. C.. 1999. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl. Acad. Sci. USA 96:7421–7426.
  • Blangy, A., Lane H. A., d'Herin P., Harper M., Kress M., and Nigg E. A.. 1995. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83:1159–1169.
  • Blenis, J. 1993. Signal transduction via the MAP kinases: proceed at your own RSK. Proc. Natl. Acad. Sci. USA 90:5889–5892.
  • Blume-Jensen, P., and Hunter T.. 2001. Oncogenic kinase signalling. Nature 411:355–365.
  • Booher, R. N., Holman P. S., and Fattaey A.. 1997. Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J. Biol. Chem. 272:22300–22306.
  • Borgne, A., and Meijer L.. 1996. Sequential dephosphorylation of p34(cdc2) on Thr-14 and Tyr-15 at the prophase/metaphase transition. J. Biol. Chem. 271:27847–27854.
  • Brunet, A., Bonni A., Zigmond M. J., Lin M. Z., Juo P., Hu L. S., Anderson M. J., Arden K. C., Blenis J., and Greenberg M. E.. 1999. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868.
  • Chan, H. M., and La Thangue N. B.. 2001. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114:2363–2373.
  • Chen, H., Tini M., and Evans R. M.. 2001. HATs on and beyond chromatin. Curr. Opin. Cell Biol. 13:218–224.
  • Chrivia, J. C., Kwok R. P., Lamb N., Hagiwara M., Montminy M. R., and Goodman R. H.. 1993. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859.
  • Clark, K. L., Halay E. D., Lai E., and Burley S. K.. 1993. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364:412–420.
  • Costa, R. H., Kalinichenko V. V., Holterman A. X., and Wang X.. 2003. Transcription factors in liver development, differentiation, and regeneration. Hepatology 38:1331–1347.
  • Desai, D., Wessling H. C., Fisher R. P., and Morgan D. O.. 1995. Effects of phosphorylation by CAK on cyclin binding by CDC2 and CDK2. Mol. Cell. Biol. 15:345–350.
  • Guo, S., Rena G., Cichy S., He X., Cohen P., and Unterman T.. 1999. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J. Biol. Chem. 274:17184–17192.
  • Harbour, J. W., and Dean D. C.. 2000. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14:2393–2409.
  • Harbour, J. W., Luo R. X., Dei Santi A., Postigo A. A., and Dean D. C.. 1999. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98:859–869.
  • Helt, A. M., and Galloway D. A.. 2003. Mechanisms by which DNA tumor virus oncoproteins target the Rb family of pocket proteins. Carcinogenesis 24:159–169.
  • Hindley, A., and Kolch W.. 2002. Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. J. Cell Sci. 115:1575–1581.
  • Ishida, S., Huang E., Zuzan H., Spang R., Leone G., West M., and Nevins J. R.. 2001. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol. Cell. Biol. 21:4684–4699.
  • Jensen, C. J., Buch M. B., Krag T. O., Hemmings B. A., Gammeltoft S., and Frodin M.. 1999. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. J. Biol. Chem. 274:27168–27176.
  • Kaestner, K. H., Knochel W., and Martinez D. E.. 2000. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 14:142–146.
  • Kimura, K., Hirano M., Kobayashi R., and Hirano T.. 1998. Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science 282:487–490.
  • Knudsen, E. S., and Wang J. Y.. 1997. Dual mechanisms for the inhibition of E2F binding to RB by cyclin-dependent kinase-mediated RB phosphorylation. Mol. Cell. Biol. 17:5771–5783.
  • Kops, G. J., Medema R. H., Glassford J., Essers M. A., Dijkers P. F., Coffer P. J., Lam E. W., and Burgering B. M.. 2002. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol. Cell. Biol. 22:2025–2036.
  • Korver, W., Roose J., and Clevers H.. 1997. The winged-helix transcription factor Trident is expressed in cycling cells. Nucleic Acids Res. 25:1715–1719.
  • Krupczak-Hollis, K., Wang X., Dennewitz M. B., and Costa R. H.. 2003. Growth Hormone Stimulates Proliferation of Old-aged Regenerating Liver Through Forkhead Box m1b. Hepatology 38:1552–1562.
  • Lents, N. H., Keenan S. M., Bellone C., and Baldassare J. J.. 2002. Stimulation of the Raf/MEK/ERK Cascade Is Necessary and Sufficient for Activation and Thr-160 Phosphorylation of a Nuclear-targeted CDK2. J. Biol. Chem. 277:47469–47475.
  • Leung, T. W., Lin S. S., Tsang A. C., Tong C. S., Ching J. C., Leung W. Y., Gimlich R., Wong G. G., and Yao K. M.. 2001. Over-expression of FoxM1 stimulates cyclin B1 expression. FEBS Lett. 507:59–66.
  • Liu, F., Rothblum-Oviatt C., Ryan C. E., and Piwnica-Worms H.. 1999. Overproduction of human Myt1 kinase induces a G2 cell cycle delay by interfering with the intracellular trafficking of Cdc2-cyclin B1 complexes. Mol. Cell. Biol. 19:5113–5123.
  • Liu, F., Stanton J. J., Wu Z., and Piwnica-Worms H.. 1997. The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex. Mol. Cell. Biol. 17:571–583.
  • Lundberg, A. S., and Weinberg R. A.. 1998. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol. Cell. Biol. 18:753–761.
  • Luscher-Firzlaff, J. M., Westendorf J. M., Zwicker J., Burkhardt H., Henriksson M., Muller R., Pirollet F., and Luscher B.. 1999. Interaction of the fork head domain transcription factor MPP2 with the human papilloma virus 16 E7 protein: enhancement of transformation and transactivation. Oncogene 18:5620–5630.
  • Marsden, I., Jin C., and Liao X.. 1998. Structural changes in the region directly adjacent to the DNA-binding helix highlight a possible mechanism to explain the observed changes in the sequence-specific binding of winged helix proteins. J. Mol. Biol. 278:293–299.
  • Medema, R. H., Kops G. J., Bos J. L., and Burgering B. M.. 2000. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404:782–787.
  • Morris, L., Allen K. E., and La Thangue N. B.. 2000. Regulation of E2F transcription by cyclin E-Cdk2 kinase mediated through p300/CBP co-activators. Nat. Cell Biol. 2:232–239.
  • Mueller, P. R., Coleman T. R., Kumagai A., and Dunphy W. G.. 1995. Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science 270:86–90.
  • Naar, A. M., Lemon B. D., and Tjian R.. 2001. Transcriptional coactivator complexes. Annu. Rev. Biochem. 70:475–501.
  • Narlikar, G. J., Fan H. Y., and Kingston R. E.. 2002. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487.
  • Nigg, E. A. 2001. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell. Biol. 2:21–32.
  • Nilsson, I., and Hoffmann I.. 2000. Cell cycle regulation by the Cdc25 phosphatase family. Prog. Cell Cycle Res. 4:107–114.
  • Ohi, R., and Gould K. L.. 1999. Regulating the onset of mitosis. Curr. Opin. Cell Biol. 11:267–273.
  • Ookata, K., Hisanaga S., Okumura E., and Kishimoto T.. 1993. Association of p34cdc2/cyclin B complex with microtubules in starfish oocytes. J. Cell Sci. 105:873–881.
  • Palmer, A., Gavin A. C., and Nebreda A. R.. 1998. A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory kinase Myt1. EMBO J. 17:5037–5047.
  • Palmer, A., and Nebreda A. R.. 2000. The activation of MAP kinase and p34cdc2/cyclin B during the meiotic maturation of Xenopus oocytes. Prog. Cell Cycle Res. 4:131–143.
  • Pani, L., Overdier D. G., Porcella A., Qian X., Lai E., and Costa R. H.. 1992. Hepatocyte nuclear factor 3β contains two transcriptional activation domains, one of which is novel and conserved with the Drosophila forkhead protein. Mol. Cell. Biol. 12:3723–3732.
  • Pouyssegur, J., Volmat V., and Lenormand P.. 2002. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem. Pharmacol. 64:755–763.
  • Qian, X., and Costa R. H.. 1995. Analysis of HNF-3β protein domains required for transcriptional activation and nuclear targeting. Nucleic Acids Res. 23:1184–1191.
  • Rausa, F., Tan Y., and Costa R. H.. 2003. Association between HNF-6 and FoxA2 DNA binding domains stimulates FoxA2 transcriptional activity but inhibits HNF-6 DNA binding. Mol. Cell. Biol. 23:437–449.
  • Rausa, F. M., Tan Y., Zhou H., Yoo K., Stolz D. B., Watkins S., Franks R. R., Unterman T. G., and Costa R. H.. 2000. Elevated levels of HNF-3β in mouse hepatocytes influence expression of genes involved in bile acid and glucose homeostasis. Mol. Cell. Biol. 20:8264–8282.
  • Richards, S. A., Dreisbach V. C., Murphy L. O., and Blenis J.. 2001. Characterization of regulatory events associated with membrane targeting of p90 ribosomal S6 kinase 1. Mol. Cell. Biol. 21:7470–7480.
  • Roberts, E. C., Shapiro P. S., Nahreini T. S., Pages G., Pouyssegur J., and Ahn N. G.. 2002. Distinct cell cycle timing requirements for extracellular signal-regulated kinase and phosphoinositide 3-kinase signaling pathways in somatic cell mitosis. Mol. Cell. Biol. 22:7226–7241.
  • Roth, S. Y., Denu J. M., and Allis C. D.. 2001. Histone acetyltransferases. Annu. Rev. Biochem. 70:81–120.
  • Samadani, U., and Costa R. H.. 1996. The transcriptional activator hepatocyte nuclear factor six regulates liver gene expression. Mol. Cell. Biol. 16:6273–6284.
  • Solomon, M. J. 1994. The function(s) of CAK, the p34cdc2-activating kinase. Trends Biochem. Sci. 19:496–500.
  • Sutani, T., Yuasa T., Tomonaga T., Dohmae N., Takio K., and Yanagida M.. 1999. Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes Dev. 13:2271–2283.
  • Takeda, D. Y., Wohlschlegel J. A., and Dutta A.. 2001. A bipartite substrate recognition motif for cyclin-dependent kinases. J. Biol. Chem. 276:1993–1997.
  • Wang, X., Hung N.-J., and Costa R. H.. 2001. Earlier expression of the transcription factor HFH 11B (FOXM1B) Diminishes Induction of p21CIP1/WAF1 levels and accelerates mouse hepatocyte entry into S-phase following carbon tetrachloride liver injury. Hepatology 33:1404–1414.
  • Wang, X., Kiyokawa H., Dennewitz M. B., and Costa R. H.. 2002. The forkhead box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc. Natl. Acad. Sci. USA 99:16881–16886.
  • Wang, X., Krupczak-Hollis K., Tan Y., Dennewitz M. B., Adami G. R., and Costa R. H.. 2002. Increased hepatic forkhead box M1B (FoxM1B) levels in old-aged mice stimulated liver regeneration through diminished p27Kip1 protein levels and increased Cdc25B expression. J. Biol. Chem. 277:44310–44316.
  • Wang, X., Quail E., Hung N.-J., Tan Y., Ye H., and Costa R. H.. 2001. Increased levels of forkhead box M1B transcription factor in transgenic mouse hepatocytes prevents age-related proliferation defects in regenerating liver. Proc. Natl. Acad. Sci. USA 98:11468–11473.
  • Wells, N. J., Watanabe N., Tokusumi T., Jiang W., Verdecia M. A., and Hunter T.. 1999. The C-terminal domain of the Cdc2 inhibitory kinase Myt1 interacts with Cdc2 complexes and is required for inhibition of G(2)/M progression. J. Cell Sci. 112:3361–3371.
  • Westendorf, J. M., Rao P. N., and Gerace L.. 1994. Cloning of cDNAs for M-phase phosphoproteins recognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope. Proc. Natl. Acad. Sci. USA 91:714–718.
  • Wohlschlegel, J. A., Dwyer B. T., Takeda D. Y., and Dutta A.. 2001. Mutational analysis of the Cy motif from p21 reveals sequence degeneracy and specificity for different cyclin-dependent kinases. Mol. Cell. Biol. 21:4868–4874.
  • Yao, F., Svensjo T., Winkler T., Lu M., Eriksson C., and Eriksson E.. 1998. Tetracycline repressor, tetR, rather than the tetR-mammalian cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells. Hum. Gene Ther. 9:1939–1950.
  • Yao, K. M., Sha M., Lu Z., and Wong G. G.. 1997. Molecular analysis of a novel winged helix protein, WIN. Expression pattern, DNA binding property, and alternative splicing within the DNA binding domain. J. Biol. Chem. 272:19827–19836.
  • Ye, H., Holterman A., Yoo K. W., Franks R. R., and Costa R. H.. 1999. Premature expression of the winged helix transcription factor HFH-11B in regenerating mouse liver accelerates hepatocyte entry into S phase. Mol. Cell. Biol. 19:8570–8580.
  • Ye, H., Kelly T. F., Samadani U., Lim L., Rubio S., Overdier D. G., Roebuck K. A., and Costa R. H.. 1997. Hepatocyte nuclear factor 3/forkhead homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues. Mol. Cell. Biol. 17:1626–1641.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.