9
Views
32
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Mdt1, a Novel Rad53 FHA1 Domain-Interacting Protein, Modulates DNA Damage Tolerance and G2/M Cell Cycle Progression in Saccharomycescerevisiae

, , &
Pages 2779-2788 | Received 18 Nov 2003, Accepted 05 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Abraham, R. T. 2001. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15:2177–2196.
  • Alcasabas, A. A., Osborn A. J., Bachant J., Hu F., Werler P. J., Bousset K., Furuya K., Diffley J. F., Carr A. M., and Elledge S. J.. 2001. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat. Cell Biol. 3:958–965.
  • Bashkirov, V. I., King J. S., Bashkirova E. V., Schmuckli-Maurer J., and Heyer W. D.. 2000. DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints. Mol. Cell. Biol. 20:4393–4404.
  • Bell, D. W., Varley J. M., Szydlo T. E., Kang D. H., Wahrer D. C., Shannon K. E., Lubratovich M., Verselis S. J., Isselbacher K. J., Fraumeni J. F., Birch J. M., Li F. P., Garber J. E., and Haber D. A.. 1999. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286:2528–2531.
  • Burke, D., Dawson D., and Stearns T.. 2000. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Carney, J. P., Maser R. S., Olivares H., Davis E. M., Le Beau M., Yates III J. R., Hays L., Morgan W. F., and Petrini J. H.. 1998. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93:477–486.
  • Clerici, M., Paciotti V., Baldo V., Romano M., Lucchini G., and Longhese M. P.. 2001. Hyperactivation of the yeast DNA damage checkpoint by TEL1 and DDC2 overexpression. EMBO J. 20:6485–6498.
  • Cortez, D., Guntuku S., Qin J., and Elledge S. J.. 2001. ATR and ATRIP: partners in checkpoint signaling. Science 294:1713–1716.
  • de la Torre-Ruiz, M. A., Green C. M., and Lowndes N. F.. 1998. RAD9 and RAD24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation. EMBO J. 17:2687–2698.
  • Derkatch, I. L., Bradley M. E., Hong J. Y., and Liebman S. W.. 2001. Prions affect the appearance of other prions: the story of [PIN+]. Cell 106:171–182.
  • Duncker, B. P., Shimada K., Tsai-Pflugfelder M., Pasero P., and Gasser S. M.. 2002. An N-terminal domain of Dbf4p mediates interaction with both origin recognition complex (ORC) and Rad53p and can deregulate late origin firing. Proc. Natl. Acad. Sci. USA 99:16087–16092.
  • Durocher, D., and Jackson S. P.. 2002. The FHA domain. FEBS Lett. 513:58–66.
  • Durocher, D., Taylor I. A., Sarbassova D., Haire L. F., Westcott S. L., Jackson S. P., Smerdon S. J., and Yaffe M. B.. 2000. The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol. Cell 6:1169–1182.
  • Emili, A. 1998. MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Mol. Cell 2:183–189.
  • Emili, A., Schieltz D. M., Yates III J. R., and Hartwell L. H.. 2001. Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1. Mol. Cell 7:13–20.
  • Fields, S., and Song O.. 1989. A novel genetic system to detect protein-protein interactions. Nature 340:245–247.
  • Hammet, A., Pike B. L., and Heierhorst J.. 2002. Posttranscriptional regulation of the RAD5 DNA repair gene by the Dun1 kinase and the Pan2-Pan3 poly(A)-nuclease complex contributes to survival of replication blocks. J. Biol. Chem. 277:22469–22474.
  • Hammet, A., Pike B. L., McNees C. J., Conlan L. A., Tenis N., and Heierhorst J.. 2003. FHA domains as phospho-threonine binding modules in cell signaling. IUBMB Life 55:23–27.
  • Hammet, A., Pike B. L., Mitchelhill K. I., Teh T., Kobe B., House C. M., Kemp B. E., and Heierhorst J.. 2000. FHA domain boundaries of the Dun1p and Rad53p cell cycle checkpoint kinases. FEBS Lett. 471:141–146.
  • Heierhorst, J., Kobe B., Feil S. C., Parker M. W., Benian G. M., Weiss K. R., and Kemp B. E.. 1996. Ca2+/S100 regulation of giant protein kinases. Nature 380:636–639.
  • Huang, M., Zhou Z., and Elledge S. J.. 1998. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94:595–605.
  • James, P., Halladay J., and Craig E. A.. 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436.
  • Jorgensen, P., Nishikawa J. L., Breitkreutz B.-J., and Tyers M.. 2002. Systematic identification of pathways that couple cell growth and division in yeast. Science 297:395–400.
  • Kondo, T., Matsumoto K., and Sugimoto K.. 1999. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. Mol. Cell. Biol. 19:1136–1143.
  • Kumar, R., Reynolds D. M., Shevchenko A., Goldstone S. D., and Dalton S.. 2000. Forkhead transcription factors, Fkh1p and Fkh2p, collaborate with Mcm1p to control transcription required for M-phase. Curr. Biol. 10:896–906.
  • Lee, S. J., Schwartz M. F., Duong J. K., and Stern D. F.. 2003. Rad53 phosphorylation site clusters are important for Rad53 regulation and signaling. Mol. Cell. Biol. 23:6300–6314.
  • Leroy, C., Lee S. E., Vaze M. B., Ochsenbien F., Guerois R., Haber J. E., and Marsolier-Kergoat M. C.. 2003. PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol. Cell 11:827–835.
  • Li, J., Lee G., Van Doren S. R., and Walker J. C.. 2000. The FHA domain mediates phosphoprotein interactions. J. Cell Sci. 113:4143–4149.
  • Lin, J. J., and Zakian V. A.. 1994. Isolation and characterization of two Saccharomyces cerevisiae genes that encode proteins that bind to (TG1-3)n single strand telomeric DNA in vitro. Nucleic Acids Res. 22:4906–4913.
  • Mallory, J. C., and Petes T. D.. 2000. Protein kinase activity of Tel1p and Mec1p, two Saccharomyces cerevisiae proteins related to the human ATM protein kinase. Proc. Natl. Acad. Sci. USA 97:13749–13754.
  • Martin, S. G., Laroche T., Suka N., Grunstein M., and Gasser S. M.. 1999. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97:621–633.
  • Matsuoka, S., Huang M., and Elledge S. J.. 1998. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282:1893–1897.
  • Nash, P., Tang X., Orlicky S., Chen Q., Gertler F. B., Mendenhall M. D., Sicheri F., Pawson T., and Tyers M.. 2001. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414:514–521.
  • Navas, T. A., Zhou Z., and Elledge S. J.. 1995. DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 80:29–39.
  • Pellicioli, A., Lucca C., Liberi G., Marini F., Lopes M., Plevani P., Romano A., Di Fiore P. P., and Foiani M.. 1999. Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J. 18:6561–6572.
  • Pike, B. L., Hammet A., and Heierhorst J.. 2001. Role of the N-terminal forkhead-associated domain in the cell cycle checkpoint function of the Rad53 kinase. J. Biol. Chem. 276:14019–14026.
  • Pike, B. L., Yongkiettrakul S., Tsai M. D., and Heierhorst J.. 2003. Diverse but overlapping functions of the two forkhead-associated (FHA) domains in Rad53 checkpoint kinase activation. J. Biol. Chem. 278:30421–30424.
  • Rouse, J., and Jackson S. P.. 2002. Lcd1p recruits Mec1p to DNA lesions in vitro and in vivo. Mol. Cell 9:857–869.
  • Sanchez, Y., Bachant J., Wang H., Hu F., Liu D., Tetzlaff M., and Elledge S. J.. 1999. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 286:1166–1171.
  • Sanchez, Y., Desany B. A., Jones W. J., Liu Q., Wang B., and Elledge S. J.. 1996. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271:357–360.
  • Santocanale, C., and Diffley J. F.. 1998. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395:615–618.
  • Schwartz, M. F., Duong J. K., Sun Z., Morrow J. S., Pradhan D., and Stern D. F.. 2002. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Mol. Cell 9:1055–1065.
  • Schwartz, M. F., Lee S. J., Duong J. K., Eminaga S., and Stern D. F.. 2003. FHA domain-mediated DNA checkpoint regulation of Rad53. Cell Cycle 2:384–396.
  • Sheu, Y. J., Barral Y., and Snyder M.. 2000. Polarized growth controls cell shape and bipolar bud site selection in Saccharomycescerevisiae. Mol. Cell. Biol. 20:5235–5247.
  • Sidorova, J. M., and Breeden L. L.. 1997. Rad53-dependent phosphorylation of Swi6 and down-regulation of CLN1 and CLN2 transcription occur in response to DNA damage in Saccharomyces cerevisiae. Genes Dev. 11:3032–3045.
  • Sun, Z., Hsiao J., Fay D. S., and Stern D. F.. 1998. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281:272–274.
  • Surana, U., Robitsch H., Price C., Schuster T., Fitch I., Futscher A. B., and Nasmyth K.. 1991. The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65:145–161.
  • Tong, A. H., Evangelista M., Parsons A. B., Xu H., Bader G. D., Page N., Robinson M., Raghibizadeh S., Hogue C. W., Bussey H., Andrews B., Tyers M., and Boone C.. 2001. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368.
  • Vialard, J. E., Gilbert C. S., Green C. M., and Lowndes N. F.. 1998. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J. 17:5679–5688.
  • Weinert, T. A., Kiser G. L., and Hartwell L. H.. 1994. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev. 8:652–665.
  • Zhao, X., Chabes A., Domkin V., Thelander L., and Rothstein R.. 2001. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J. 20:3544–3553.
  • Zhao, X., Muller E. G., and Rothstein R.. 1998. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2:329–340.
  • Zhou, B. B., and Elledge S. J.. 2000. The DNA damage response: putting checkpoints in perspective. Nature 48:433–439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.