32
Views
57
CrossRef citations to date
0
Altmetric
Cell Growth and Development

ΔFosB Induces Osteosclerosis and Decreases Adipogenesis by Two Independent Cell-Autonomous Mechanisms

, , , , , & show all
Pages 2820-2830 | Received 01 May 2003, Accepted 15 Dec 2003, Published online: 27 Mar 2023

REFERENCES

  • An, M. R., Hsieh C.-C., Reisner P. D., Rabek J. P., Scott S. G., Kuninger D. T., and Papaconstantinou J.. 1996. Evidence for posttranscriptional regulation of C/EBPαand C/EBPβisoform expression during the lipopolysaccharide-mediated acute-phase response. Mol. Cell. Biol. 16:2295–2306.
  • Baron, R., Vignery A., Neff L., Silverglate A., and Santa Maria A.. 1983. Processing of undecalcified bone specimens for bone histomorphometry, p. 13–35. In Recker R. R. (ed.), Bone histomorphometry: techniques and interpretation, vol. 1. CRC Press, Boca Raton, Fla.
  • Bellows, C. G., Heersche J. N. M., and Aubin J. E.. 1990. Determination of the capacity for proliferation and differentiation of osteoprogenitor cells in the presence and absence of dexamethasone. Dev. Biol. 140:132–138.
  • Beresford, J. N., Bennett J. H., Devlin C., Leboy P. S., and Owen M. E.. 1992. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J. Cell Sci. 102:341–351.
  • Brown, J. R., Ye H., Bronson R. T., Dikkes P., and Greenberg M. E.. 1996. A defect in nurturing in mice lacking the immediate early gene fosB. Cell 86:297–309.
  • Burkhardt, R., Kettner G., Bohm W., Schmidmeier M., Schlag R., Frisch B., Mallmann B., Eisenmenger W., and Gilg T.. 1987. Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone 8:157–164.
  • Cao, Z., Umek R. M., and McKnight S. L.. 1991. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 5:1538–1552.
  • Chen, J., Kelz M. B., Zeng G., Sakai N., Steffen C., Shockett P. E., Picciotto M. R., Duman R. S., and Nestler E. J.. 1998. Transgenic animals with inducible, targeted gene expression in brain. Mol. Pharmacol. 54:495–503.
  • Chomczynski, P. 1993. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. BioTechniques 15:532–534, 536-537.
  • Corral, D. A., Amling M., Priemel M., Loyer E., Fuchs S., Ducy P., Baron R., and Karsenty G.. 1998. Dissociation between bone resorption and bone formation in osteopenic transgenic mice. Proc. Natl. Acad. Sci. USA 95:13835–13840.
  • Darlington, G. J., Ross S. E., and MacDougald O. A.. 1998. The role of C/EBP genes in adipocyte differentiation. J. Biol. Chem. 273:30057–30060.
  • Descombes, P., and Schibler U.. 1991. A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67:569–579.
  • Dobrzanski, P., Noguchi T., Kovary K., Rizzo C. A., Lazo P. S., and Bravo R.. 1991. Both products of the fosB gene, FosB and its short form, FosB/SF, are transcriptional activators in fibroblasts. Mol. Cell. Biol. 11:5470–5478.
  • Ducy, P., Amling M., Takeda S., Priemel M., Schilling A. F., Beil F. T., Shen J., Vinson C., Rueger J. M., and Karsenty G.. 2000. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207.
  • Ducy, P., and Karsenty G.. 1995. Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol. Cell. Biol. 15:1858–1869.
  • Grigoriadis, A. E., Schellander K., Wang Z. Q., and Wagner E. F.. 1993. Osteoblasts are target cells for transformation in c-fos transgenic mice. J. Cell Biol. 122:685–701.
  • Gruda, M. C., van Amsterdam J., Rizzo C. A., Durham S. K., Lira S., and Bravo R.. 1996. Expression of FosB during mouse development: normal development of FosB knockout mice. Oncogene 12:2177–2185.
  • Gutierrez, S., Javed A., Tennant D. K., van Rees M., Montecino M., Stein G. S., Stein J. L., and Lian J. B.. 2002. CCAAT/enhancer-binding proteins (C/EBP) β and δ activate osteocalcin gene transcription and synergize with Runx2 at the C/EBP element to regulate bone-specific expression. J. Biol. Chem. 277:1316–1323.
  • Jochum, W., David J.-P., Elliott C., Wutz A., Plenk H., Jr., Matsuo K., and Wagner E. F.. 2000. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat. Med. 6:980–984.
  • Johnson, R. S., Spiegelman B. M., and Papaioannou V.. 1992. Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell 71:577–586.
  • Jooss, K. U., Funk M., and Muller R.. 1994. An autonomous N-terminal transactivation domain in Fos protein plays a crucial role in transformation. EMBO J. 13:1467–1475.
  • Kalajzic, Z., Liu P., Kalajzic I., Du Z., Braut A., Mina M., Canalis E., and Rowe D. W.. 2002. Directing the expression of a green fluorescent protein transgene in differentiated osteoblasts: comparison between rat type I collagen and rat osteocalcin promoters. Bone 31:654–660.
  • Karin, M., Liu Z., and Zandi E.. 1997. AP-1 function and regulation. Curr. Opin. Cell Biol. 9:240–246.
  • Kelz, M. B., Chen J., Carlezon W. A., Jr., Whisler K., Gilden L., Beckmann A. M., Steffen C., Zhang Y.-J., Marotti L., Self D. W., Tkatch T., Baranauskas G., Surmeier D. J., Neve R. L., Duman R. S., Picciotto M. R., and Nestler E. J.. 1999. Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature 401:272–276.
  • Kveiborg, M., Chiusaroli R., Sims N. A., Wu M., Sabatakos G., Horne W. C., and Baron R.. 2002. The increased bone mass in ΔFosB transgenic mice is independent of circulating leptin levels. Endocrinology 143:4304–4309.
  • Lai, C.-F., and Cheng S.-L.. 2002. Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-β in normal human osteoblastic cells. J. Biol. Chem. 277:15514–15522.
  • Lane, M. D., Tang Q.-Q., and Jiang M.-S.. 1999. Role of the CCAAT enhancer binding proteins (C/EBPs) in adipocyte differentiation. Biochem. Biophys. Res. Commun. 266:677–683.
  • Liu, S., Guo R., Tu Q., and Quarles L. D.. 2002. Overexpression of Phex in osteoblasts fails to rescue the Hyp mouse phenotype. J. Biol. Chem. 277:3686–3697.
  • Martin, R. B., Chow B. D., and Lucas P. A.. 1990. Bone marrow fat content in relation to bone remodeling and serum chemistry in intact and ovariectomized dogs. Calcif. Tissue Int. 46:189–194.
  • Mumberg, D., Lucibello F. C., Schuermann M., and Muller R.. 1991. Alternative splicing of fosB transcripts results in differentially expressed mRNAs encoding functionally antagonistic proteins. Genes Dev. 5:1212–1223.
  • Nakabeppu, Y., and Nathans D.. 1991. A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity. Cell 64:751–759.
  • Nuttall, M. E., and Gimble J. M.. 2000. Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis? Bone 27:177–184.
  • Nuttall, M. E., Patton A. J., Olivera D. L., Nadeau D. P., and Gowen M.. 1998. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J. Bone Miner. Res. 13:371–382.
  • Ossipow, V., Descombes P., and Schibler U.. 1993. CCAAT/enhancer-binding protein mRNA is translated into multiple proteins with different transcription activation potentials. Proc. Natl. Acad. Sci. USA 90:8219–8223.
  • Otsuka, E., Yamaguchi A., Hirose S., and Hagiwara H.. 1999. Characterization of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid. Am. J. Physiol. 277:C132–C138.
  • Owen, M. 1988. Marrow stromal stem cells. J. Cell Sci. Suppl. 10:63–76.
  • Parfitt, A. M., Drezner M. K., Glorieux F. H., Kanis J. A., Malluche H., Meunier P. J., Ott S. M., and Recker R. R.. 1987. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2:595–610.
  • Park, S. R., Oreffo R. O., and Triffitt J. T.. 1999. Interconversion potential of cloned human marrow adipocytes in vitro. Bone 24:549–554.
  • Pereira, R. C., Delany A. M., and Canalis E.. 2002. Effects of cortisol and bone morphogenetic protein-2 on stromal cell differentiation: correlation with CCAAT-enhancer binding protein expression. Bone 30:685–691.
  • Pittenger, M. F., Mackay A. M., Beck S. C., Jaiswal R. K., Douglas R., Mosca J. D., Moorman M. A., Simonetti D. W., Craig S., and Marshak D. R.. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147.
  • Poli, V., Mancini F. P., and Cortese R.. 1990. IL-6DBP, a nuclear protein involved in interleukin-6 signal transduction, defines a new family of leucine zipper proteins related to C/EBP. Cell 63:643–653.
  • Rangwala, S. M., and Lazar M. A.. 2000. Transcriptional control of adipogenesis. Annu. Rev. Nutr. 20:535–559.
  • Rickard, D. J., Kassem M., Hefferan T. E., Sarkar G., Spelsberg T. C., and Riggs B. L.. 1996. Isolation and characterization of osteoblast precursor cells from human bone marrow. J. Bone Miner. Res. 11:312–324.
  • Rosen, E. D., Sarraf P., Troy A. E., Bradwin G., Moore K., Milstone D. S., Spiegelman B. M., and Mortensen R. M.. 1999. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4:611–617.
  • Rosen, E. D., and Spiegelman B. M.. 2000. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 16:145–171.
  • Sabatakos, G., Davies G. E., Grosse M., Cryer A., and Ramji D. P.. 1998. Expression of the genes encoding CCAAT-enhancer binding protein isoforms in the mouse mammary gland during lactation and involution. Biochem. J. 334:205–210.
  • Sabatakos, G., Sims N. A., Chen J., Aoki K., Kelz M. B., Amling M., Bouali Y., Mukhopadhyay K., Ford K., Nestler E. J., and Baron R.. 2000. Overexpression of ΔFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat. Med. 6:985–990.
  • Sambrook, J., Fritsch E. F., and Maniatis T.. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Schreiber, E., Matthias P., Muller M. M., and Schaffner W.. 1989. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 17:6419.
  • Sen, A., Lea-Currie Y. R., Sujkowska D., Franklin D. M., Wilkison W. O., Halvorsen Y.-D. C., and Gimble J. M.. 2001. Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. J. Cell Biochem. 81:312–319.
  • Shockett, P., Difilippantonio M., Hellman N., and Schatz D. G.. 1995. A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc. Natl. Acad. Sci. USA 92:6522–6526.
  • Sims, N. A., Clement-Lacroix P., Da Ponte F., Bouali Y., Binart N., Moriggl R., Goffin V., Coschigano K., Gaillard-Kelly M., Kopchick J., Baron R., and Kelly P. A.. 2000. Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but independent of Stat5. J. Clin. Investig. 106:1095–1103.
  • Sims, N. A., Sabatakos G., Chen J.-S., Kelz M. B., Nestler E. J., and Baron R.. 2002. Regulating ΔFosB expression in adult Tet-Off-ΔFosB transgenic mice alters bone formation and bone mass. Bone 30:32–39.
  • Stein, G. S., Lian J. B., and Owen T. A.. 1990. Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J. 4:3111–3123.
  • Tanaka, T., Yoshida N., Kishimoto T., and Akira S.. 1997. Defective adipocyte differentiation in mice lacking the C/EBPβ and/or C/EBPδ gene. EMBO J. 16:7432–7443.
  • Trautwein, C., Rakemann T., Pietrangelo A., Plumpe J., Montosi G., and Manns M. P.. 1996. C/EBP-β/LAP controls down-regulation of albumin gene transcription during liver regeneration. J. Biol. Chem. 271:22262–22270.
  • Wang, G.-J., Sweet D. E., Reger S. I., and Thompson R. C.. 1977. Fat-cell changes as a mechanism of avascular necrosis of the femoral head in cortisone-treated rabbits. J. Bone Joint Surg. Am. 59:729–735.
  • Wang, N., Finegold M. J., Bradley A., Ou C. N., Abdelsayed S. V., Wilde M. D., Taylor L. R., Wilson D. R., and Darlington G. J.. 1995. Impaired energy homeostasis in C/EBPα knockout mice. Science 269:1108–1112.
  • Wang, Z.-Q., Ovitt C., Grigoriadis A. E., Mohle-Steinlein U., Ruther U., and Wagner E. F.. 1992. Bone and haematopoietic defects in mice lacking c-fos. Nature 360:741–745.
  • Wronski, T. J., Walsh C. C., and Ignaszewski L. A.. 1986. Histologic evidence for osteopenia and increased bone turnover in ovariectomized rats. Bone 7:119–123.
  • Wu, Z., Bucher N. L., and Farmer S. R.. 1996. Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPβ, C/EBPδ, and glucocorticoids. Mol. Cell. Biol. 16:4128–4136.
  • Wu, Z., Xie Y., Bucher N. L. R., and Farmer S. R.. 1995. Conditional ectopic expression of C/EBPβin NIH-3T3 cells induces PPARγ and stimulates adipogenesis. Genes Dev. 9:2350–2363.
  • Yamaguchi, A., Ishizuya T., Kintou N., Wada Y., Katagiri T., Wozney J. M., Rosen V., and Yoshiki S.. 1996. Effects of BMP-2, BMP-4, and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal cell lines, ST2 and MC3T3-G2/PA6. Biochem. Biophys. Res. Commun. 220:366–371.
  • Yen, J., Wisdom R. M., Tratner I., and Verma I. M.. 1991. An alternative spliced form of FosB is a negative regulator of transcriptional activation and transformation by Fos proteins. Proc. Natl. Acad. Sci. USA 88:5077–5081.
  • Zhao, G., Monier-Faugere M. C., Langub M. C., Geng Z., Nakayama T., Pike J. W., Chernausek S. D., Rosen C. J., Donahue L. R., Malluche H. H., Fagin J. A., and Clemens T. L.. 2000. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology 141:2674–2682.
  • Zimmerman, D., Jin F., Leboy P., Hardy S., and Damsky C.. 2000. Impaired bone formation in transgenic mice resulting from altered integrin function in osteoblasts. Dev. Biol. 220:2–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.