9
Views
19
CrossRef citations to date
0
Altmetric
Gene Expression

A Nonconserved Surface of the TFIIB Zinc Ribbon Domain Plays a Direct Role in RNA Polymerase II Recruitment

, &
Pages 2863-2874 | Received 04 Aug 2003, Accepted 07 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Aso, T., Conaway J. W., and Conaway R. C.. 1994. Role of core promoter structure in assembly of the RNA polymerase II preinitiation complex. J. Biol. Chem. 269:26575–26583.
  • Bagby, S., Kim S., Maldonado E., Tong K. I., Reinberg D., and Ikura M.. 1995. Solution structure of the C-terminal core domain of human TFIIB: similarity to cyclin A and interaction with TATA-binding protein. Cell 82:857–867.
  • Bangur, C. S., Pardee T. S., and Ponticelli A. S.. 1997. Mutational analysis of the D1/E1 core helices and the conserved N-terminal region of yeast transcription factor IIB (TFIIB): identification of an N-terminal mutant that stabilizes TATA-binding protein-TFIIB-DNA complexes. Mol. Cell. Biol. 17:6784–6793.
  • Barberis, A., Muller C. W., Harrison S. C., and Ptashne M.. 1993. Delineation of two functional regions of transcription factor TFIIB. Proc. Natl. Acad. Sci. USA 90:5628–5632.
  • Bell, S. D., Magill C. P., and Jackson S. P.. 2001. Basal and regulated transcription in Archea. Biochem. Soc. Trans. 29:392–395.
  • Buratowski, S., and Zhou H.. 1993. Functional domains of transcription factor TFIIB. Proc. Natl. Acad. Sci. USA 90:5633–5637.
  • Buratowski, S., Sopta M., Greenblatt J., and Sharp P. A.. 1991. RNA polymerase II-associated proteins are required for a DNA conformation change in the transcription initiation complex. Proc. Natl. Acad. Sci. USA 88:7509–7513.
  • Burton, Z. F., Killeen M., Sopta M., Ortolan L. G., and Greenblatt J.. 1988. Rap30/74: a general initiation factor that binds to RNA polymerase II. Mol. Cell. Biol. 8:1602–1613.
  • Bushnell, D. A., Bamdad C., and Kornberg R. D.. 1996. A minimal set of RNA polymerase II transcription protein interactions. J. Biol. Chem. 271:20170–20174.
  • Chen, H.-T., and Hahn S.. 2003. Binding of TFIIB to RNA polymerase II: mapping the binding site for the TFIIB zinc ribbon domain with the preinitiation complex. Mol. Cell 12:437–447.
  • Chen, H.-T., Legault P., Glushka J., Omichinski J. G., and Scott R. A.. 2000. Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription. Protein Sci. 9:1743–1752.
  • Cho, H., Maldonado E., and Reinberg D.. 1997. Affinity purification of a human RNA polymerase II complex using antibodies against transcription factor IIF. J. Biol. Chem. 272:11495–11502.
  • Conaway, J. W., and Conaway R. C.. 1990. An RNA polymerase II transcription factor shares functional properties with Escherichia coli σ70. Science 248:1550–1553.
  • Dignam, J. D., Lebovitz R. M., and Roeder R. G.. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract isolated from mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Fairley, J. A., Evans R., Hawkes N. A., and Roberts S. G. E.. 2002. Core promoter-dependent TFIIB conformation and a role for TFIIB conformation in transcriptional start site selection. Mol. Cell. Biol. 22:6697–6705.
  • Fang, S. M., and Burton Z. F.. 1996. RNA polymerase II-associated protein (RAP) 74 binds transcription factor (TF) IIB and blocks TFIIB-RAP30 binding. J. Biol. Chem. 271:11703–11709.
  • Flores, O., Ha I., and Reinberg D.. 1991. Factors involved in specific transcription by mammalian RNA polymerase II. Purification and subunit composition of transcription factor IIF. J. Biol. Chem. 265:5629–5634.
  • Flores, O., Maldonado E., Burton Z., Greenblatt J., and Reinberg D.. 1988. Factors involved in specific transcription by mammalian RNA polymerase II. RNA polymerase II-associating protein 30 is an essential component of transcription factor TFIIF. J. Biol. Chem. 263:10812–10816.
  • Ge, H., Martinez E., Chiang C. M., and Roeder R. G.. 1996. Activator-dependent transcription by mammalian RNA polymerase II: in vitro reconstitution with GTFs and cofactors. Methods Enzymol. 274:57–71.
  • Ha, I., Lane W. S., and Reinberg D.. 1991. Cloning of a human gene encoding the general transcription factor IIB. Nature 352:689–695.
  • Ha, I., Roberts S., Maldonado E., Sun X., Kim L.-U., Green M., and Reinberg D.. 1993. Multiple functional domains of human transcription factor IIB: distinct interactions with two general factors and RNA polymerase II. Genes Dev. 7:1021–1032.
  • Hahn, S., and Roberts S.. 2000. The zinc ribbon domains of the general transcription factors TFIIB and Brf: conserved functional surfaces but different roles in transcriptional initiation. Genes Dev. 14:719–730.
  • Hansen, S. K., Takada S., Jacobson R. H., Lis J. T., and Tjian R.. 1997. Transcription properties of a cell type-specific TATA binding protein, TRF. Cell 91:71–83.
  • Hawkes, N. A., and Roberts S. G.. 1999. The role of human TFIIB in transcription start site selection in vitro and in vivo. J. Biol. Chem. 274:14337–14343.
  • Henry, R. W., Mittal V., Ma B., Kobayashi R., and Hernandez N.. 1998. SNAP19 mediates the assembly of a functional core promoter complex (SNAPC) shared by RNA polymerase II and III. Genes Dev. 12:2664–2672.
  • Hernandez, N. 2001. Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J. Biol. Chem. 276:26733–26736.
  • Hisatake, K., Roeder R. G., and Horikoshi M.. 1993. Functional dissection of TFIIB domains required for TFIIB-TFIID-promoter complex formation and basal transcription activity. Nature 363:744–747.
  • Kaludov, N. K., and Wolffe A. P.. 2000. MeCP2 driven transcriptional repression in vitro: selectivity for methylated DNA, action at a distance and contacts with the basal transcription machinery. Nucleic Acids Res. 28:1921–1928.
  • Killeen, M. T., Coulombe B., and Greenblatt J.. 1992. Recombinant TBP, transcription factor IIB, and RAP30 are sufficient for promoter recognition by mammalian RNA polymerase II. J. Biol. Chem. 267:9463–9466.
  • Killeen, M. T., and Greenblatt J. F.. 1992. The general transcription factor RAP30 binds to RNA polymerase II and prevents it from binding nonspecifically to DNA. Mol. Cell. Biol. 12:30–37.
  • Kim, T. K., Zhao Y., Ge H., Bernstein R., and Roeder R. G.. 1995. TATA-binding protein residues implicated in a functional interplay between negative cofactor NC2 (Dr1) and general factors TFIIA and TFIIB. J. Biol. Chem. 270:10976–10981.
  • Knaus, R., Pollock R., and Guarente L.. 1996. Yeast SUB1 is a suppressor of TFIIB mutations and has homology to the human co-activator PC4. EMBO J. 15:1933–1940.
  • Kuhlman, T. C., Cho H., Reinberg D., and Hernandez N.. 1999. The general transcription factors IIA, IIB, IIF, and IIE are required for RNA polymerase II transcription from the U1 small nuclear RNA promoter. Mol. Cell. Biol. 19:2130–2141.
  • Lagrange, T., Kapanides A. N., Tang H., Reinberg D., and Ebright R. H.. 1998. New core promoter element in RNA polymerase II-dependent transcription: sequence specific DNA binding by transcription factor IIB. Genes Dev. 12:34–44.
  • Lai, J. S., Cleary M. A., and Herr W.. 1992. A single amino acid exchange transfers VP16-induced positive control from the Oct-1 to the Oct 2 homeo domain. Genes Dev. 6:2058–2065.
  • Lei, L., Ren D., Finkelstein A., and Burton Z.. 1998. Functions of the N- and C-terminal domains of human RAP74 in transcriptional initiation, elongation, and recycling of RNA polymerase II. Mol. Cell. Biol. 18:2130–2142.
  • Li, Y., Flanagan P. M., Tschochner H., and Kornberg R. D.. 1994. RNA polymerase II initiation factor interactions and transcriptional start site selection. Science 263:805–807.
  • Magill, C. P., Jackson S. P., and Bell S. D.. 2001. Identification of a conserved archaeal RNA polymerase subunit contacted by the basal transcription factor TFB. J. Biol. Chem. 276:46693–46696.
  • Maldonado, E., Ha I., Weis L., and Reinberg D.. 1990. Role of transcription factors IIA, IID, and IIB during formation of a transcription competent complex. Mol. Cell. Biol. 10:6335–6347.
  • Malik, S., Lee D. K., and Roeder R. G.. 1993. Potential RNA polymerase II-induced interactions of transcription factor TFIIB. Mol. Cell. Biol. 13:6253–6259.
  • Mermod, N., O'Neill E. A., Kelly T. J., and Tjian R.. 1989. The proline rich transcriptional activator of CTF/NF-1 is distinct from the replication and DNA binding domain. Cell 4:741–753.
  • Myer, V. E., and Young R. A.. 1998. RNA polymerase II holoenzymes and subcomplexes. J. Biol. Chem. 43:27757–27760.
  • Nikolov, D. B., Chen H., Halay E. D., Usheva A. A., Hisatake K., Lee D. K., Roeder R. G., and Burley S. K.. 1995. Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature 377:119–128.
  • Orphanides, G., Lagrange T., and Reinberg D.. 1996. The general transcription factors of RNA polymerase II. Genes Dev. 10:2657–2683.
  • Ossipow, V., Tassan J. P., Nigg E. A., and Schibler U.. 1995. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83:137–146.
  • Pardee, T. S., Bangur C. S., and Ponticelli A. S.. 1998. The N-terminal region of yeast TFIIB contains two adjacent functional domains involved in stable RNA polymerase II binding and transcription start site selection. J. Biol. Chem. 273:17859–17864.
  • Parvin, J. D., and Sharp P. A.. 1993. DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell 73:533–540.
  • Ranish, J. A., Yudkovsky N., and Hahn S.. 1999. Intermediates in formation of the RNA polymerase II preinitiation complex: holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev. 13:49–63.
  • Ren, D., Lei L., and Burton Z. F.. 1999. A region within the RAP74 subunit of human transcription factor IIF is critical for initiation but dispensable for complex assembly. Mol. Cell. Biol. 19:7377–7387.
  • Sawadogo, M., and Roeder R. G.. 1985. Factors involved in a specific transcription by human RNA polymerase II: analysis by a rapid and quantitative in vitro assay. Proc. Natl. Acad. Sci. USA 82:4394–4398.
  • Shaw, S., Carson D. J., Dorsey M. J., and Ma J.. 1997. Mutational studies of yeast transcription factor IIB in vivo reveal a functional surface important for gene activation. Proc. Natl. Acad. Sci. USA 94:2427–2432.
  • Shaw, S., Wingfield J., Dorsey M. J., and Ma J.. 1996. Identifying a species-specific region of yeast TFIIB in vivo. Mol. Cell. Biol. 16:3651–3657.
  • Strubin, M., and Struhl K.. 1992. Yeast and human TFIID with altered DNA-binding specificity for TATA elements. Cell 68:721–730.
  • Tansey, W. P., and Herr W.. 1997. Selective use of TBP and TFIIB revealed by a sequential TATA-TBP-TFIIB array with altered specificity. Science 275:829–831.
  • Tansey, W. P., Ruppert S., Tjian R., and Herr W.. 1994. Multiple regions of TBP participate in the response to transcriptional activators in vivo. Genes Dev. 8:2756–2769.
  • Tora, L. 2002. A unified nomenclature for TATA box binding protein (TBP)-associated factors (TAFs) involved in RNA polymerase II transcription. Genes Dev. 16:673–675.
  • Tsai, F. T., and Sigler P. B.. 2000. Structural basis of preinitiation complex assembly on human pol II promoters. EMBO J. 19:25–36.
  • Tubon, T. 2003. RNA polymerase II promoter recruitment and transcriptional regulation by TFIIB. Ph.D. thesis. State University of New York, Stony Brook.
  • Yamashita, S., Hisatake K., Kokubo T., Doi K., Roeder R. G., Horikoshi M., and Nakatani Y.. 1993. Transcription factor TFIIB sites important for interaction with promoter bound TFIID. Science 261:463–466.
  • Zhang, D.-Y., Dorsey M. J., Voth V. P., Carson D. J., Zeng Z., Stillman D. J., and Ma J.. 2000. Intramolecular interaction of yeast TFIIB in transcription control. Nucleic Acids Res. 28:1913–1920.
  • Zhao, X., and Herr W.. 2002. A regulated two-step mechanism of TBP binding to DNA: a solvent-exposed surface of TBP inhibits TATA box recognition. Cell 108:615–627.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.