12
Views
18
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

A Novel Complex Regulates cardiac actin Gene Expression through Interaction of Emb, a Class VI POU Domain Protein, MEF2D, and the Histone Transacetylase p300

, , , , &
Pages 2944-2957 | Received 12 Aug 2002, Accepted 06 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Andersen, B., Schonemann M. D., Pearse R. V., Jenne K., Sugarman J., and Rosenfeld M. G.. 1993. Bnr 5 is a divergent POU domain factor highly expressed in layer IV of the neocortex. J. Biol. Chem. 268:23390–23398.
  • Biben, C., Kirschbaum B. J., Garner L., and Buckingham M.. 1994. Novel muscle-specific enhancer sequences upstream of the cardiac actin gene. Mol. Cell. Biol. 14:3504–3513.
  • Biben, C., Hadchouel J., Tajbakhsh S., and Buckingham M.. 1996. Developmental and tissue-specific regulation of the murine cardiac actin gene in vivo depends on distinct skeletal and cardiac muscle-specific enhancer elements in addition to the proximal promoter. Dev. Biol. 173:200–212.
  • Black, B. L., and Olson E. N.. 1998. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 14:167–196.
  • Buckingham, M., and Tajbakhsh S.. 1999. Myogenic cell specification during somitogenesis, p. 617–633. In Moody S. A. (ed.), Cell lineage and fate determination. Academic Press, New York, N.Y.
  • Catala, F., Wanner R., Barton P., Cohen A., Wright W., and Buckingham M.. 1995. A skeletal muscle-specific enhancer regulated by factors binding to E and CArG boxes is present in the promoter of the mouse myosin light-chain 1A gene. Mol. Cell. Biol. 15:4585–4596.
  • Chen, S. L., Dowhan D. H., Hosking B. M., and Muscat G. E.. 2000. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation. Genes Dev. 14:1209–1228.
  • Cui, H., and Bulleit R. F.. 1997. Expression of the POU transcription factor Brn-5 inhibits proliferation of NG108-15 cells. Biochem. Biophys. Res. Commun. 236:693–696.
  • Cui, H., and Bulleit R. F.. 1998. Expression of the POU transcription factor Brn5 is an early event in the terminal differentiation of CNS neurons. J. Neurosci. Res. 52:625–632.
  • Czerjesi, P., Lilly B., Hinkley C., Perry M., and Olson E. N.. 1994. Homeodomain protein MHox and MADS protein myocyte enhancer-binding factor-2 converge on a common element in the muscle creatine kinase enhancer. J. Biol. Chem. 269:16740–16745.
  • Dhalluin, C., Carlson J. E., Zeng L., Cheng H., Aggarwal A. K., and Zhou M. M.. 1999. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491–496.
  • Dignam, J. D., Lebovitz R. M., and Roeder R. G.. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Di Lisi, R., Millino C., Calabria E., Altruda F., Schiaffino S., and Ausoni S.. 1998. Combinatorial cis-acting elements control tissue-specific activation of the cardiac troponin I gene in vitro and in vivo. J. Biol. Chem. 273:25371–25380.
  • Dominov, J. A., and Miller J. B.. 1996. POU homeodomain genes and myogenesis. Dev. Genet. 19:108–118.
  • Dressel, U., Bailey P. J., Wang S. C., Downes M., Evans R. M., and Muscat G. E.. 2001. A dynamic role for HDAC7 in MEF2-mediated muscle differentiation. J. Biol. Chem. 276:17007–17013.
  • Eckner, R., Yao T. P., Oldread E., and Livingston D. M.. 1996. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 10:2478–2490.
  • Ferrari, S., Battini R., and Molinari S.. 1994. Specific binding to vitamin D response elements of chicken intestinal DNA-binding activity is not related to the vitamin D receptor. Mol. Endocrinol. 8:173–181.
  • Garner, I., Minty A. J., Alonso S., Barton P. J., and Buckingham M. E.. 1986. A 5′ duplication of the α-cardiac actin gene in BALB/c mice is associated with abnormal levels of α-cardiac and α-skeletal actin mRNAs in adult cardiac tissue. EMBO J. 5:2559–2567.
  • Garner, I., Sassoon D., Vandekerckhove J., Alonso S., and Buckingham M. E.. 1989. A developmental study of the abnormal expression of α-cardiac and α-skeletal actins in the striated muscle of a mutant mouse. Dev. Biol. 134:236–245.
  • Gerber, A. N., Klesert T. R., Bergstrom D. A., and Tapscott S. J.. 1997. Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis. Genes Dev. 11:436–450.
  • Gossett, L. A., Kelvin D. J., Sternberg E. A., and Olson E. N.. 1989. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol. Cell. Biol. 9:5022–5033.
  • Han, T. H., and Prywes R.. 1995. Regulatory role of MEF2D in serum induction of the c-jun promoter. Mol. Cell. Biol. 15:2907–2915.
  • Hinkley, C., and Perry M.. 1991. A variant octamer motif in a Xenopus H2B histone gene promoter is not required for transcription in frog oocytes. Mol. Cell. Biol. 11:641–654.
  • Jaynes, J. B., Johnson J. E., Buskin J. N., Gartside C. I., and Hauschka S. D.. 1988. The muscle creatine kinase gene is regulated by multiple upstream elements, including a muscle-specific enhancer. Mol. Cell. Biol. 8:62–70.
  • Johansen, T., Moens U., Holm T., Fjose A., and Krauss S.. 1993. Zebrafish pou(c): a divergent POU family gene ubiquitously expressed during embryogenesis. Nucleic Acids Res. 21:475–483.
  • Kelly, R. G., Zammit P. S., Schneider A., Alonso S., Biben C., and Buckingham M. E.. 1997. Embryonic and foetal myogenic programmes act through separate enhancers at the MLC1F/3F locus. Dev. Biol. 187:183–199.
  • Kouzarides, T. 2000. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 19:1176–1179.
  • Lakish, M. M., Diagana T. T., North D. L., and Whalen R. G.. 1998. MEF-2 and Oct-1 bind to two homologous promoter sequence elements and participate in the expression of a skeletal muscle-specific gene. J. Biol. Chem. 273:15217–15226.
  • Lemercier, C., Verdel A., Galloo B., Curtet S., Brocard M. P., and Khochbin S.. 2000. mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J. Biol. Chem. 275:15594–15599.
  • Liu, Q., Schwartz J., Bucana C., and Olson E. N.. 1997. Control of cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407.
  • Lu, J., McKinsey T. A., Zhang C. L., and Olson E. N.. 2000. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol. Cell 6:233–244.
  • Mal, A., Sturniolo M., Schiltz R. L., Ghosh M. K., and Harter M. L.. 2001. A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. EMBO J. 20:1739–1753.
  • Martin, J. F., Miano J. M., Hustad C. M., Copeland N. G., Jenkins N. A., and Olson E. N.. 1994. A MEF2 gene that generates a muscle-specific isoform via alternative mRNA splicing. Mol. Cell. Biol. 14:1647–1656.
  • Maxam, A. M., and Gilbert W.. 1980. Sequencing end-labelled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • McKinsey, T. A., Zhang C. L., and Olson E. N.. 2001. Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 11:497–504.
  • Messier, H., Brickner H., Gaikwad J., and Fotedar A.. 1993. A novel POU domain protein which binds to the T-cell receptor β-enhancer. Mol. Cell. Biol. 13:5450–5460.
  • Minty, A. J., Alonso S., Caravatti M., and Buckingham M. E.. 1982. A fetal skeletal muscle actin mRNA in the mouse and its identity with cardiac actin mRNA. Cell 30:185–192.
  • Miska, E. A., Karlsson C., Langley E., Nielsen S. J., Pines J., and Kouzarides T.. 1999. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 18:5099–5107.
  • Missero, C., Calautti E., Eckner R., Chin J., Tsai L. H., Livingston D. M., and Dotto G. P.. 1995. Involvement of the cell-cycle inhibitor CipI/WAFI and the EIA-associated p300 protein in terminal differentiation. Proc. Natl. Acad. Sci. USA 92:5451–5455.
  • Molkentin, J. D., Black B. L., Martin J. F., and Olson E. N.. 1995. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83:1125–1136.
  • Murphy, S., Yoon J. B., Gerster T., and Roeder R. G.. 1992. Oct-1 and Oct-2 potentiate functional interactions of a transcription factor with the proximal sequence element of small nuclear RNA genes. Mol. Cell. Biol. 12:3247–3261.
  • Okamoto, K., Wakamiya M., Noji S., Koyama E., Taniguchi S., Takemura R., Copeland N. G., Gilbert D. J., Jenkins N. A., Muramatsu M., and Hamada H.. 1993. A novel class of murine POU gene predominantly expressed in central nervous system. J. Biol. Chem. 268:7449–7457.
  • Polesskaya, A., Duquet A., Naguibneva L., Weise C., Vervisch A., Bengal E., Hucho F., Robin P., and Harel-Bellan A.. 2000. CREB-binding protein/p300 activates MyoD by acetylation. J. Biol. Chem. 275:34359–34364.
  • Polesskaya, A., Naguibneva L., Fritsch L., Duquet A., Ait-Si-Ali A., Robin P., Vervisch A., Pritchard L. L., Cole P., and Harel-Bellan A.. 2001. CBP/p300 and muscle differentiation: no HAT, no muscle. EMBO J. 20:6816–6825.
  • Pontoglio, M., Faust D. M., Doyen A., Yaniv M., and Weiss M. C.. 1997. Hepatocyte nuclear factor 1α gene inactivation impairs chromatin remodeling and demethylation of the phenylalanine hydroxylase gene. Mol. Cell. Biol. 17:4948–4956.
  • Puri, P. L., Avantaggiati M. L., Balsano C., Sang N., Graessmann A., Giordano A., and Levrero M.. 1997. p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription. EMBO J. 16:369–383.
  • Puri, P. L., Sartorelli V., Yang X. J., Hamamori Y., Ogryzko W., Howard B. H., Kedes L., Wang J. Y., Graessmann A., Nakatani Y., and Levrero M.. 1997. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol. Cell 1:35–45.
  • Raguz, S., Hobbs C., Yague E., Ioannou P. A., Walsh F. S., and Antoniou M.. 1998. Muscle-specific locus control region activity associated with the human desmin gene. Dev. Biol. 201:26–42.
  • Relaix, F., Molinari S., Lemonnier M., Schäfer B., and Buckingham M.. The in vivo form of the murine class VI POU protein Emb is larger than that encoded by previously described transcripts. Gene, in press.
  • Rhee, J. M., Gruber C. A., Brodie T. B., Trieu M., and Turner E. E.. 1998. Highly co-operative homodimerization is a conserved property of neural POU proteins. J. Biol. Chem. 273:34196–34205.
  • Sartorelli, V., Huang J., Hamamori Y., and Kedes L.. 1997. Molecular mechanisms of myogenic coactivation by p300: indirect interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 17:1010–1026.
  • Sartorelli, V., Puri P. L., Hamamori Y., Ogrysko V., Chung G., Nakatani Y., Wang J. Y., and Kedes L.. 1999. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol. Cell 4:725–734.
  • Schreiber, E., Harshman K., Kemler L., Malipiero U., Schaffner W., and Fontana A.. 1990. Astrocytes and glioblastoma cells express novel octamer-DNA binding proteins distinct from the ubiquitous Oct-1 and B cell type Oct-2 proteins. Nucleic Acids Res. 18:5495–5503.
  • Seed, B., and Sheen J. Y.. 1988. A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene 67:271–277.
  • Sive, H. L., and Roeder R. G.. 1986. Interaction of a common factor with conserved promoter and enhancer sequences in histone H2B, immunoglobulin, and U2 small nuclear RNA (snRNA) genes. Proc. Natl. Acad. Sci. USA 83:6382–6386.
  • Slepak, T. I., Webster K. A., Zang J., Prentice H., O'Dowd A., Hicks M. N., and Bishopric N. H.. 2001. Control of cardiac-specific transcription by p300 through myocyte enhancer factor-2D. J. Biol. Chem. 276:7575–7585.
  • Soutoglou, E., Viollet B., Vaxillaire M., Yaniv M., Pontoglio M., and Talianidis I.. 2001. Transcription factor-dependent regulation of CBP and P/CAF histone acetyltransferase activity. EMBO J. 20:1984–1992.
  • Strahl, B. D., and Allis C. D.. 2000. The language of covalent histone modifications. Nature 403:41–45.
  • Sturm, R. A., and Herr W.. 1998. The POU domain is a bipartite DNA binding structure. Nature 336:601–604.
  • Verrijzer, C. P., Alkema M. J., van Weperen W. W., Van Leeuwen H. C., Strating M. J., and van der Vliet P. C.. 1992. The DNA binding specificity of the bipartite POU domain and its subdomains. EMBO J. 11:4993–5003.
  • Wang, A. H., Bertos N. R., Vezmar M., Pelletier N., Crosato M., Heng H. H., Th'ng J., Han J., and Yang X. J.. 1999. HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol. Cell. Biol. 19:7816–7827.
  • West, A. G., Gaszner M., and Felsenfeld G.. 2002. Insulators: many functions, many mechanisms. Genes Dev. 16:271–288.
  • Wey, E., Lyons G. E., and Schäfer B. W.. 1994. A human POU domain gene, mPOU, is expressed in developing brain and specific adult tissues. Eur. J. Biochem. 220:753–762.
  • Wey, E., and Schäfer B. W.. 1996. Identification of novel DNA binding sites recognized by the transcription factor mPOU (POU 6F1). Biochem. Biophys. Res. Commun. 220:274–279.
  • Wu, R., Jurek M., Sundarababu S., and Weinstein D. E.. 2001. The POU gene Brn5 is induced by neuregulin and is restricted to myelinating Schwann cells. Mol. Cell Neurosci. 17:683–695.
  • Xu, W., Edmondson D. G., Evrard Y. A., Wakamiya M., Behringer R. R., and Roth S. Y.. 2000. Loss of Gcn512 leads to increased apoptosis and mesodermal defects during mouse development. Nat. Genet. 26:229–232.
  • Yaffé, D., and Saxel O.. 1977. Serial passaging and differentiation of myogenic cells isolated from dystrophic muscle. Nature 270:725–777.
  • Yao, T. P., Oh S. P., Fuchs M., Zhou N. D., Ch'ng L. E., Newsome D., Bronson R. T., Li E., Livingstone D. M., and Eckner R.. 1998. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93:361–372.
  • Yuan, W., Condorelli G., Caruso M., Felsani A., and Giordano A.. 1996. Human p300 protein is a coactivator for the transcription factor MyoD. J. Biol. Chem. 271:9009–9013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.