62
Views
71
CrossRef citations to date
0
Altmetric
Gene Expression

Loss of Translational Control in Yeast Compromised for the Major mRNA Decay Pathway

, , , &
Pages 2998-3010 | Received 08 Oct 2003, Accepted 15 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Albrecht, G., Mosch H. U., Hoffmann B., Reusser U., and Braus G. H.. 1998. Monitoring the Gcn4 protein-mediated response in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 273:12696–12702.
  • Anderson, J. S. J., and Parker R. P.. 1998. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 17:1497–1506.
  • Ashe, M. P., De Long S. K., and Sachs A. B.. 2000. Glucose depletion rapidly inhibits translation initiation in yeast. Mol. Biol. Cell 11:833–845.
  • Ashe, M. P., Slaven J. W., De Long S. K., Ibrahimo S., and Sachs A. B.. 2001. A novel eIF2B-dependent mechanism of translational control in yeast as a response to fusel alcohols. EMBO J. 20:6464–6474.
  • Barbet, N. C., Schneider U., Helliwell S. B., Stansfield I., Tuite M. F., and Hall M. N.. 1996. TOR controls translation initiation and early G1 progression in yeast. Mol. Biol. Cell 7:25–42.
  • Beelman, C. A., Stevens A., Caponigro G., LaGrandeur T. E., Hatfield L., Fortner D. M., and Parker R.. 1996. An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382:642–646.
  • Boeck, R., Lapeyre B., Brown C. E., and Sachs A. B.. 1998. Capped mRNA degradation intermediates accumulate in the yeast spb8-2 mutant. Mol. Cell. Biol. 18:5062–5072.
  • Cherkasova, V. A., and Hinnebusch A. G.. 2003. Translational control by TOR and TAP42 through dephosphorylation of eIF2α kinase GCN2. Genes Dev. 17:859–872.
  • Choi, S. K., Lee J. H., Zoll W. L., Merrick W. C., and Dever T. E.. 1998. Promotion of met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast. Science 280:1757–1760.
  • de la Cruz, J., Kressler D., Tollervey D., and Linder P.. 1998. Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3′ end formation of 5.8S rRNA in Saccharomyces cerevisiae. EMBO J. 17:1128–1140.
  • Dever, T. E. 1999. Translation initiation: adept at adapting. Trends Biochem. Sci. 24:398–403.
  • Dever, T. E., Feng L., Wek R. C., Cigan A. M., Donahue T. F., and Hinnebusch A. G.. 1992. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68:585–596.
  • Fromont-Racine, M., Mayes A. E., Brunet-Simon A., Rain J. C., Colley A., Dix I., Decourty L., Joly N., Ricard F., Beggs J. D., and Legrain P.. 2000. Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast 17:95–110.
  • González, C. I., Bhattacharya A., Wang W., and Peltz S. W.. 2001. Nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Gene 274:15–25.
  • Goossens, A., Dever T. E., Pascual-Ahuir A., and Serrano R.. 2001. The protein kinase Gcn2p mediates sodium toxicity in yeast. J. Biol. Chem. 276:30753–30760.
  • Guthrie, C., and Fink G. R. (ed.). 1991. Guide to yeast genetics and molecular biology. Academic Press, San Diego, Calif.
  • Hinnebusch, A. G. 2000. Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes, p. 185–244. In Sonenberg N., Hershey J. W. B., and Mathews M. B. (ed.), Translational control of gene expression. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Hinnebusch, A. G., and Natarajan K.. 2002. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot. Cell 1:22–32.
  • Hsu, C. L., and Stevens A.. 1993. Yeast cells lacking 5′→3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell. Biol. 13:4826–4835.
  • Jacobson, A., and Peltz S. W.. 2000. Destabilization of nonsense-containing transcripts in Saccharomyces cerevisiae, p. 827–847. In Sonenberg N., Hershey J. W. B., and Mathews M. B. (ed.), Translational control of gene expression. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Kressler, D., de la Cruz J., Rojo M., and Linder P.. 1997. Fal1p is an essential DEAD-box protein involved in 40S-ribosomal-subunit biogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:7283–7294.
  • Kubota, H., Obata T., Ota K., Sasaki T., and Ito T.. 2003. Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2α kinase GCN2. J. Biol. Chem. 278:20457–20460.
  • Kuhn, K. M., DeRisi J. L., Brown P. O., and Sarnow P.. 2001. Global and specific translational regulation in the genomic response of Saccharomyces cerevisiae to a rapid transfer from a fermentable to a nonfermentable carbon source. Mol. Cell. Biol. 21:916–927.
  • Lucchini, G., Hinnebusch A. G., Chen C., and Fink G. R.. 1984. Positive regulatory interactions of the HIS4 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1326–1333.
  • Mangus, D. A., Amrani N., and Jacobson A.. 1998. Pbp1p, a factor interacting with Saccharomyces cerevisiae poly(A)-binding protein, regulates polyadenylation. Mol. Cell. Biol. 18:7383–7396.
  • Mitchell, P., Petfalski E., Shevchenko A., Mann M., and Tollervey D.. 1997. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 91:457–466.
  • Mitchell, P., and Tollervey D.. 2003. An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3′→5′ degradation. Mol. Cell 11:1405–1413.
  • Montero-Lomeli, M., Morais B. L., Figueiredo D. L., Neto D. C., Martins J. R., and Masuda C. A.. 2002. The initiation factor eIF4A is involved in the response to lithium stress in Saccharomyces cerevisiae. J. Biol. Chem. 277:21542–21548.
  • Proweller, A., and Butler S.. 1994. Efficient translation of poly(A)-deficient mRNAs in Saccharomyces cerevisiae. Genes Dev. 8:2629–2640.
  • Rolfes, R. J., and Hinnebusch A. G.. 1993. Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2. Mol. Cell. Biol. 13:5099–5111.
  • Sachs, A. B. 2000. Physical and functional interactions between the mRNA cap structure and the poly(A) tail, p. 447–465. In Sonenberg N., Hershey J. W. B., and Mathews M. B. (ed.), Translational control of gene expression. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Sachs, A. B., and Davis R. W.. 1989. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell 58:857–867.
  • Schwartz, D. C., and Parker R.. 2000. Interaction of mRNA translation and mRNA decay in Saccharomyces cerevisiae, p. 807–825. In Sonenberg N., Hershey J. W. B., and Mathews M. B. (ed.), Translational control of gene expression. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Searfoss, A., Dever T. E., and Wickner R.. 2001. Linking the 3′ poly(A) tail to the subunit joining step of translation initiation: relations of Pab1p, eukaryotic translation initiation factor 5b (Fun12p), and Ski2p-Slh1p. Mol. Cell. Biol. 21:4900–4908.
  • Sheth, U., and Parker R.. 2003. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300:805–808.
  • Steiger, M., Carr-Schmid A., Schwartz D. C., Kiledjian M., and Parker R.. 2003. Analysis of recombinant yeast decapping enzyme. RNA 9:231–238.
  • Tharun, S., and Parker R.. 1999. Analysis of mutations in the yeast mRNA decapping enzyme. Genetics 151:1273–1285.
  • Tharun, S., He W., Mayes A. E., Lennertz P., Beggs J. D., and Parker R.. 2000. Yeast Sm-like proteins function in mRNA decapping and decay. Nature 404:515–518.
  • Tucker, M., and Parker R.. 2000. Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae. Annu. Rev. Biochem. 69:571–595.
  • Tucker, M., Staples R. R., Valencia-Sanchez M. A., Muhlrad D., and Parker R.. 2002. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21:1427–1436.
  • Tzamarias, D., Roussou I., and Thireos G.. 1989. Coupling of GCN4 mRNA translational activation with decreased rates of polypeptide chain initiation. Cell 57:947–954.
  • Uesono, Y., and Toh-E A.. 2002. Transient inhibition of translation initiation by osmotic stress. J. Biol. Chem. 277:13848–13855.
  • Valasek, L., Mathew A. A., Shin B. S., Nielsen K. H., Szamecz B., and Hinnebusch A. G.. 2003. The yeast eIF3 subunits TIF32/a, NIP1/c, and eIF5 make critical connections with the 40S ribosome in vivo. Genes Dev. 17:786–799.
  • Valenzuela, L., Aranda C., and Gonzalez A.. 2001. TOR modulates GCN4-dependent expression of genes turned on by nitrogen limitation. J. Bacteriol. 183:2331–2334.
  • van der Knaap, M. S., Leegwater P. A., Konst A. A., Visser A., Naidu S., Oudejans C. B., Schutgens R. B., and Pronk J. C.. 2002. Mutations in each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter. Ann. Neurol. 51:264–270.
  • von der Haar, T., and McCarthy J. E.. 2002. Intracellular translation initiation factor levels in Saccharomyces cerevisiae and their role in cap-complex function. Mol. Microbiol. 46:531–544.
  • Wach, A., Brachat A., Pohlmann R., and Philippsen P.. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808.
  • Yang, R., Wek S. A., and Wek R. C.. 2000. Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase. Mol. Cell. Biol. 20:2706–2717.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.