10
Views
23
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Chromatin-Mediated Restriction of Nuclear Factor 1/CTF Binding in a Repressed and Hormone-Activated Promoter In Vivo

, , &
Pages 3036-3047 | Received 16 Dec 2003, Accepted 07 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Adams, C. C., and Workman J. L.. 1995. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol. Cell. Biol. 15:1405–1421.
  • Almouzni, G., and Wolffe A. P.. 1993. Replication-coupled chromatin assembly is required for repression of basal transcription in vivo. Genes Dev. 7:2033–2047.
  • Anderson, J. D., Thastrom A., and Widom J.. 2002. Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation. Mol. Cell. Biol. 22:7147–7157.
  • Archer, T. K., Cordingley M. G., Wolford R. G., and Hager G. L.. 1991. Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter. Mol. Cell. Biol. 11:688–698.
  • Belikov, S., Gelius B., Almouzni G., and Wrange Ö.. 2000. Hormone activation induces nucleosome positioning in vivo. EMBO J. 19:1023–1033.
  • Belikov, S., Gelius B., and Wrange O.. 2001. Hormone-induced nucleosome positioning in the MMTV promoter is reversible. EMBO J. 20:2802–2811.
  • Blomquist, P., Belikov S., and Wrange O.. 1999. Increased nuclear factor 1 binding to its nucleosomal site mediated by sequence-dependent DNA structure. Nucleic Acids Res. 27:517–525.
  • Blomquist, P., Li Q., and Wrange Ö.. 1996. The affinity of nuclear factor 1 for its DNA site is drastically reduced by nucleosomal organisation irrespective of its rotational or translational position. J. Biol. Chem. 271:153–159.
  • Brüggemeier, U., Kalff M., Franke S., Scheidereit C., and Beato M.. 1991. Ubiquitous transcription factor OTF-1 mediates induction of the MMTV promoter through synergistic interaction with hormone receptors. Cell 64:565–572.
  • Buetti, E. 1994. Stably integrated mouse mammary tumor virus long terminal repeat DNA requires the octamer motifs for basal promoter activity. Mol. Cell. Biol. 14:1191–1203.
  • Buetti, E., and Kuhnel B.. 1986. Distinct sequence elements involved in the glucocorticoid regulation of the mouse mammary tumor virus promoter identified by linker scanning mutagenesis. J. Mol. Biol. 190:379–389.
  • Buetti, E., Kühnel B., and Diggelmann H.. 1989. Dual function of a nuclear factor I binding site in MMTV transcription regulation. Nucleic Acids Res. 17:3065–3078.
  • Cato, A. C., Skroch P., Weinmann J., Butkeraitis P., and Ponta H.. 1988. DNA sequences outside the receptor-binding sites differently modulate the responsiveness of the mouse mammary tumour virus promoter to various steroid hormones. EMBO J. 7:1403–1410.
  • Chaudhry, A. Z., Vitullo A. D., and Gronostajski R. M.. 1998. Nuclear factor I (NFI) isoforms differentially activate simple versus complex NFI-responsive promoters. J. Biol. Chem. 273:18538–18546.
  • Cordingley, M. G., Riegel A. T., and Hager G. L.. 1987. Steroid-dependent interaction of transcription factors with the inducible promoter of mouse mammary tumor virus in vivo. Cell 48:261–270.
  • das Neves, L., Duchala C. S., Tolentino-Silva F., Haxhiu M. A., Colmenares C., Macklin W. B., Campbell C. E., Butz K. G., Gronostajski R. M., and Godinho F.. 1999. Disruption of the murine nuclear factor I-A gene (Nfia) results in perinatal lethality, hydrocephalus, and agenesis of the corpus callosum. Proc. Natl. Acad. Sci. USA 96:11946–11951.
  • Di Croce, L., Koop R., Venditti P., Westphal H. M., Nightingale K. P., Corona D. F., Becker P. B., and Beato M.. 1999. Two-step synergism between the progesterone receptor and the DNA-binding domain of nuclear factor 1 on MMTV minichromosomes. Mol. Cell 4:45–54.
  • Eisfeld, K., Candau R., Truss M., and Beato M.. 1997. Binding of NF1 to the MMTV promoter in nucleosomes: influence of rotational phasing, translational positioning and histone H1. Nucleic Acids Res. 25:3733–3742.
  • Gelius, B., Wade P., Wolffe A. P., Wrange Ö., and Östlund Farrants A.-K.. 1999. Characterization of a chromatin remodeling activity in Xenopus oocytes. Eur. J. Biochem. 262:426–434.
  • Gelius, B., and Wrange O.. 2001. Glucocorticoid hormone-induced receptor localization to the chromatin fibers formed on injected DNA in Xenopus oocytes. Exp. Cell Res. 265:319–328.
  • Gronostajski, R. M. 2000. Roles of the NFI/CTF gene family in transcription and development. Gene 249:31–45.
  • Grunder, A., Ebel T. T., Mallo M., Schwarzkopf G., Shimizu T., Sippel A. E., and Schrewe H.. 2002. Nuclear factor I-B (Nfib) deficient mice have severe lung hypoplasia. Mech. Dev. 112:69–77.
  • Han, M., Kim U.-J., Kayne P., and Grunstein M.. 1988. Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae. EMBO J. 7:2221–2228.
  • Hausen, P., and Riebesell M.. 1991. The early development of Xenopus laevis, an atlas of histology. Springer-Verlag KG, Berlin, Germany.
  • Kim, M. H., and Peterson D. O.. 1995. Oct-1 protein promotes functional transcription complex assembly on the mouse mammary tumor virus promoter. J. Biol. Chem. 270:27823–27828.
  • Kruse, U., and Sippel A. E.. 1994. Transcription factor nuclear factor I proteins form stable homo- and heterodimers. FEBS Lett. 348:46–50.
  • Kutoh, E., Strömstedt P. E., and Poellinger L.. 1992. Functional interference between the ubiquitous and constitutive octamer transcription factor 1 (OTF-1) and the glucocorticoid receptor by direct protein-protein interaction involving the homeo subdomain of OTF-1. Mol. Cell. Biol. 12:4960–4969.
  • Li, Q., and Wrange Ö.. 1995. Accessibility of a glucocorticoid response element in a nucleosome depends on its rotational positioning. Mol. Cell. Biol. 15:4375–4384.
  • Luisi, B. F., Xu W. X., Otwinowski Z., Freedman L. P., Yamamoto K. R., and Sigler P. B.. 1991. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352:497–505.
  • Maxam, A. M., and Gilbert W.. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74:560–564.
  • McNally, J. G., Muller W. G., Walker D., Wolford R., and Hager G. L.. 2000. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287:1262–1265.
  • Mermod, N., O′Neill E. A., Kelly T. J., and Tjian R.. 1989. The proline-rich transcriptional activator of CTF/NF-1 is distinct from the replication and DNA binding domain. Cell 58:741–753.
  • Nagata, K., Guggenheimer R. A., Enomoto T., Lichy J. H., and Hurwitz J.. 1982. Adenovirus DNA replication in vitro: identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. Proc. Natl. Acad. Sci. USA 79:6438–6442.
  • Nowock, J., Borgmeyer U., Püschel A. W., Rupp R. A. W., and Sippel A. E.. 1985. The TGGCA protein binds to the MMTV-LTR, the adenovirus origin of replication, and the BK virus enhancer. Nucleic Acids Res. 13:2045–2061.
  • Payvar, F., Wrange Ö., Carlstedt-Duke J., Okret S., Gustafsson J.-Å., and Yamamoto K. R.. 1981. Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment whose transcription is regulated by glucocorticoids in vitro. Proc. Natl. Acad. Sci. USA 78:6628–6632.
  • Perlmann, T., and Wrange O.. 1988. Specific glucocorticoid receptor binding to DNA reconstituted in a nucleosome. EMBO J. 7:3073–3079.
  • Phillips, K., and Luisi B.. 2000. The virtuoso of versatility: POU proteins that flex to fit. J. Mol. Biol. 302:1023–1039.
  • Pina, B., Bruggemeier U., and Beato M.. 1990. Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter. Cell 60:719–731.
  • Prado, F., Koop R., and Beato M.. 2002. Accurate chromatin organization of the mouse mammary tumor virus promoter determines the nature of the synergism between transcription factors. J. Biol. Chem. 277:4911–4917.
  • Prado, F., Vicent G., Cardalda C., and Beato M.. 2002. Differential role of the proline-rich domain of nuclear factor 1-C splice variants in DNA binding and transactivation. J. Biol. Chem. 277:16383–16390.
  • Prefontaine, G. G., Lemieux M. E., Giffin W., Schild-Poulter C., Pope L., LaCasse E., Walker P., and Hache R. J.. 1998. Recruitment of octamer transcription factors to DNA by glucocorticoid receptor. Mol. Cell. Biol. 18:3416–3430.
  • Richard-Foy, H., and Hager G. L.. 1987. Sequence-specific positioning of nucleosomes over the steroid-inducible MMTV promoter. EMBO J. 6:2321–2328.
  • Ringold, G. M., Yamamoto K. R., Tomkins G. M., Bishop J. M., and Varmus H. E.. 1975. Dexamethasone-mediated induction of mouse mammary tumor virus RNA: a system for studying glucocorticoid action. Cell 6:299–305.
  • Roulet, E., Bucher P., Schneider R., Wingender E., Dusserre Y., Werner T., and Mermod N.. 2000. Experimental analysis and computer prediction of CTF/NFI transcription factor DNA binding sites. J. Mol. Biol. 297:833–848.
  • Spangenberg, C., Eisfeld K., Stunkel W., Luger K., Flaus A., Richmond T. J., Truss M., and Beato M.. 1998. The mouse mammary tumour virus promoter positioned on a tetramer of histones H3 and H4 binds nuclear factor 1 and OTF1. J. Mol. Biol. 278:725–739.
  • Steele-Perkins, G., Butz K. G., Lyons G. E., Zeichner-David M., Kim H. J., Cho M. I., and Gronostajski R. M.. 2003. Essential role for NFI-C/CTF transcription-replication factor in tooth root development. Mol. Cell. Biol. 23:1075–1084.
  • Toohey, M. G., Lee J. W., Huang M., and Peterson D. O.. 1990. Functional elements of the steroid hormone-responsive promoter of mouse mammary tumor virus. J. Virol. 64:4477–4488.
  • Truss, M., Bartsch J., Schulbert A., Hache R. J. G., and Beato M.. 1995. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo. EMBO J. 14:1737–1751.
  • Zaret, K. S., and Yamamoto K. R.. 1984. Reversible and persistent changes in chromatin structure accompany activation of a glucocorticoid-dependent enhancer element. Cell 38:29–38.
  • Zernika-Goetz, M., Pines J., Ryan K., Siemering K. R., Haseloff J., Evans M. J., and Gurdon J. B.. 1996. An indelible lineage marker for Xenopus using a mutated green fluorescence protein. Development 122:3719–3724.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.