197
Views
422
CrossRef citations to date
0
Altmetric
Cell Growth and Development

p38 Mitogen-Activated Protein Kinase Is the Central Regulator of Cyclic AMP-Dependent Transcription of the Brown Fat Uncoupling Protein 1 Gene

, , , , , , , & show all
Pages 3057-3067 | Received 22 Oct 2003, Accepted 05 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Aquila, H., Link T. A., and Klingenberg M.. 1985. The uncoupling protein from brown fat mitochondria is related to the mitochondrial ADP/ATP carrier. Analysis of sequence homologies and of folding of the protein in the membrane. EMBO J. 4:2369–2376.
  • Badger, A. M., Bradbeer J. N., Votta B., Lee J. C., Adams J. L., and Griswold D. E.. 1996. Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. J. Pharmacol. Exp. Ther. 279:1453–1461.
  • Bukowiecki, L. J., Geloen A., and Collet A. J.. 1986. Proliferation and differentiation of brown adipocytes from interstitial cells during cold acclimation. Am. J. Physiol. 250:C880–C887.
  • Cao, W., Medvedev A. V., Daniel K. W., and Collins S.. 2001. β-Adrenergic activation of p38 MAP kinase in adipocytes. cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. J. Biol. Chem. 276:27077–27082.
  • Cassard-Doulcier, A. M., Gelly C., Bouillaud F., and Ricquier D.. 1998. A 211-bp enhancer of the rat uncoupling protein-1 (UCP-1) gene controls specific and regulated expression in brown adipose tissue. Biochem. J. 333:243–246.
  • Cassard-Doulcier, A.-M., Gelly C., Fox N., Schrementi J., Raimbault S., Klaus S., Forest C., Bouillard F., and Ricquier D.. 1993. Tissue-specific and β-adrenergic regulation of the mitochondrial uncoupling protein gene: control by cis-acting elements in the 5′-flanking region. Mol. Endocrinol. 7:497–506.
  • Collins, S., Altschmied J., Herbsman O., Caron M. G., Mellow P. L., and Lefkowitz R. J.. 1990. A cAMP response element in the β2-adrenergic receptor gene confers transcriptional autoregulation by cAMP. J. Biol. Chem. 265:19330–19335.
  • Collins, S., Caron M. G., and Lefkowitz R. J.. 1988. β2-Adrenergic receptors in hamster smooth muscle cells are transcriptionally regulated by glucocorticoids. J. Biol. Chem. 263:9067–9070.
  • Collins, S., Daniel K. W., Rohlfs E. M., Ramkumar V., Taylor I. L., and Gettys T. W.. 1994. Impaired expression and functional activity of the β3- and β1-adrenergic receptors in adipose tissue of congenitally obese (C57BL/6J ob/ob) mice. Mol. Endocrinol. 8:518–527.
  • Dalgaard, L. T., and Pedersen O.. 2001. Uncoupling proteins: functional characteristics and role in the pathogenesis of obesity and type II diabetes. Diabetologia 44:946–965.
  • Derijard, B., Raingeaud J., Barrett T., Wu I. H., Han J., Ulevitch R. J., and Davis R. J.. 1995. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267:682–685.
  • de Rooij, J., Zwartkruis F. J., Verheijen M. H., Cool R. H., Nijman S. M., Wittinghofer A., and Bos J. L.. 1998. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477.
  • Herzig, S., Long F., Jhala U. S., Hedrick S., Quinn R., Bauer A., Rudolph D., Schutz G., Yoon C., Puigserver P., Spiegelman B., and Montminy M.. 2001. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183.
  • Jacobsson, A., Stadler U., Glotzer M. A., and Kozak L. P.. 1985. Mitochondrial uncoupling protein from mouse brown fat. J. Biol. Chem. 260:16250–16254.
  • Johnson, G. L., and Lapadat R.. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912.
  • Joyeux, M., Boumendjel A., Carroll R., Ribuot C., Godin-Ribuot D., and Yellon D. M.. 2000. SB 203580, a mitogen-activated protein kinase inhibitor, abolishes resistance to myocardial infarction induced by heat stress. Cardiovasc. Drugs Ther. 14:337–343.
  • Kozak, L., Britton J., Kozak U., and Wells J.. 1988. The mitochondrial uncoupling protein gene. J. Biol. Chem. 263:12274–12277.
  • Kozak, U. C., Kopecky J., Teisinger J., Enerback S., Boyer B., and Kozak L. P.. 1994. An upstream enhancer regulating brown-fat-specific expression of the mitochondrial uncoupling protein gene. Mol. Cell. Biol. 14:59–67.
  • Lafontan, M., and Berlan M.. 1993. Fat cell adrenergic receptors and the control of white and brown fat cell function. J. Lipid Res. 34:1057–1091.
  • Lefkowitz, R. J. 1998. G protein-coupled receptors. III. New roles for receptor kinases and β-arrestins in receptor signaling and desensitization. J. Biol. Chem. 273:18677–18680.
  • Lehmann, J. M., Moore L. B., Smith-Oliver T. A., Wilkison W. O., Willson T. M., and Kliewer S. A.. 1995. An antidiabetic thiazolidinedione is a high affinity ligand for the nuclear receptor PPARγ. J. Biol. Chem. 270:12953–12956.
  • Li, Z., Jiang Y., Ulevitch R. J., and Han J.. 1996. The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochem. Biophys. Res. Commun. 228:334–340.
  • Lowell, B. B., and Spiegelman B. M.. 2000. Towards a molecular understanding of adaptive thermogenesis. Nature 404:652–660.
  • Luttrell, L. M. 2002. Big g, little g. G proteins and actin cytoskeletal reorganization. Mol. Cell 9:1152–1154.
  • Medvedev, A. V., Snedden S. K., Raimbault S., Ricquier D., and Collins S.. 2001. Transcriptional regulation of the mouse uncoupling protein-2 gene: double E-box motif is required for PPARγ-dependent activation. J. Biol. Chem. 276:10817–10823.
  • Miyamoto, N. G. 1987. Nucleotide sequence of the human beta-actin promoter 5′ flanking region. Nucleic Acids Res. 15:9095.
  • Nedergaard, J., Golozoubova V., Matthias A., Asadi A., Jacobsson A., and Cannon B.. 2001. UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim. Biophys. Acta 1504:82–106.
  • Ono, K., and Han J.. 2000. The p38 signal transduction pathway: activation and function. Cell. Signal. 12:1–13.
  • Pecqueur, C., Couplan E., Bouillaud F., and Ricquier D.. 2001. Genetic and physiological analysis of the role of uncoupling proteins in human energy homeostasis. J. Mol. Med. 79:48–56.
  • Puigserver, P., Adelmant G., Wu Z., Fan M., Xu J., O'Malley B., and Spiegelman B. M.. 1999. Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286:1368–1371.
  • Puigserver, P., Rhee J., Lin J., Wu Z., Yoon J., Zhang C., Krauss S., Mootha V., Lowell B., and Spiegelman B.. 2001. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPAR coactivator-1. Mol. Cell 8:971.
  • Puigserver, P., and Spiegelman B. M.. 2003. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24:78–90.
  • Puigserver, P., Wu Z., Park C., Graves R., Wright M., and Spiegelman B.. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839.
  • Ricquier, D., and Bouillaud F.. 2000. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem. J. 345:161–179.
  • Ross, S. R., Choy L., Graves R. A., Fox N., Solevjeva V., Klaus S., Ricquier D., and Speigelman B. M.. 1992. Hibernoma formation in transgenic mice and isolation of a brown adipocyte cell line expressing the uncoupling protein gene. Proc. Natl. Acad. Sci. USA 89:7561–7565.
  • Sears, I. B., MacGinnitie M. A., Kovacs L. G., and Graves R. A.. 1996. Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor γ. Mol. Cell. Biol. 16:3410–3419.
  • Silva, J., and Rabelo R.. 1997. Regulation of the uncoupling protein gene expression. Eur. J. Endocrinol. 136:251–264.
  • Thomas, P. S. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77:5201–5205.
  • Tiraby, C., Tavernier G., Lefort C., Larrouy D., Bouillaud F., Ricquier D., and Langin D.. 2003. Acquirement of brown fat cell features by human white adipocytes. J. Biol. Chem. 278:33370–33376.
  • Underwood, D. C., Osborn R. R., Bochnowicz S., Webb E. F., Rieman D. J., Lee J. C., Romanic A. M., Adams J. L., Hay D. W., and Griswold D. E.. 2000. SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am. J. Physiol. Lung Cell Mol. Physiol. 279:L895–L902.
  • Underwood, D. C., Osborn R. R., Kotzer C. J., Adams J. L., Lee J. C., Webb E. F., Carpenter D. C., Bochnowicz S., Thomas H. C., Hay D. W., and Griswold D. E.. 2000. SB 239063, a potent p38 MAP kinase inhibitor, reduces inflammatory cytokine production, airways eosinophil infiltration, and persistence. J. Pharmacol. Exp. Ther. 293:281–288.
  • Wu, Z., Puigserver P., Andersson U., Zhang C., Adelmant G., Mootha V., Troy A., Cinti S., Lowell B., Scarpulla R. C., and Spiegelman B. M.. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124.
  • Xu, L., Glass C. K., and Rosenfeld M. G.. 1999. Coactivator and corepressor complexes in nuclear receptor function. Curr. Opin. Genet. Dev. 9:140–147.
  • Yoon, J. C., Puigserver P., Chen G., Donovan J., Wu Z., Rhee J., Adelmant G., Stafford J., Kahn C. R., Granner D. K., Newgard C. B., and Spiegelman B. M.. 2001. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138.
  • Yubero, P., Barbera M. J., Alvarez R., Vinas O., Mampel T., Iglesias R., Villarroya F., and Giralt M.. 1998. Dominant negative regulation by c-Jun of transcription of the uncoupling protein-1 gene through a proximal cAMP-regulatory element: a mechanism for repressing basal and norepinephrine-induced expression of the gene before brown adipocyte differentiation. Mol. Endocrinol. 12:1023–1037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.