41
Views
82
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Regulation of Mammalian Epithelial Differentiation and Intestine Development by Class I Histone Deacetylases

, &
Pages 3132-3139 | Received 14 Nov 2003, Accepted 16 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Alland, L., Muhle R., Hou H., Jr., Potes J., Chin L., Schreiber-Agus N., and DePinho R. A.. 1997. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387:49–55.
  • Birchmeier, C., and Birchmeier W.. 1993. Molecular aspects of mesenchymal-epithelial interactions. Annu. Rev. Cell Biol. 9:511–540.
  • Chang, Y. L., Peng Y. H., Pan I. C., Sun D. S., King B., and Huang D. H.. 2001. Essential role of Drosophila Hdac1 in homeotic gene silencing. Proc. Natl. Acad. Sci. USA 98:9730–9735.
  • Christova, R., and Oelgeschlager T.. 2002. Association of human TFIID-promoter complexes with silenced mitotic chromatin in vivo. Nat. Cell Biol. 4:79–82.
  • Deckert, J., and Struhl K.. 2002. Targeted recruitment of Rpd3 histone deacetylase represses transcription by inhibiting recruitment of Swi/Snf, SAGA, and TATA binding protein. Mol. Cell. Biol. 22:6458–6470.
  • Dimitrov, S., Almouzni G., Dasso M., and Wolffe A. P.. 1993. Chromatin transitions during early Xenopus embryogenesis: changes in histone H4 acetylation and in linker histone type. Dev. Biol. 160:214–227.
  • Dufourcq, P., Victor M., Gay F., Calvo D., Hodgkin J., and Shi Y.. 2002. Functional requirement for histone deacetylase 1 in Caenorhabditis elegans gonadogenesis. Mol. Cell. Biol. 22:3024–3034.
  • Duh, G., Mouri N., Warburton D., and Thomas D. W.. 2000. EGF regulates early embryonic mouse gut development in chemically defined organ culture. Pediatr. Res. 48:794–802.
  • Etchegaray, J. P., Lee C., Wade P. A., and Reppert S. M.. 2003. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421:177–182.
  • Fukuda, K., Sakamoto N., Narita T., Saitoh K., Kameda T., Iba H., and Yasugi S.. 2000. Application of efficient and specific gene transfer systems and organ culture techniques for the elucidation of mechanisms of epithelial-mesenchymal interaction in the developing gut. Dev. Growth Differ. 42:207–211.
  • Gottlicher, M., Minucci S., Zhu P., Kramer O. H., Schimpf A., Giavara S., Sleeman J. P., Lo Coco F., Nervi C., Pelicci P. G., and Heinzel T.. 2001. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 20:6969–6978.
  • Hassig, C. A., Tong J. K., Fleischer T. C., Owa T., Grable P. G., Ayer D. E., and Schreiber S. L.. 1998. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc. Natl. Acad. Sci. USA 95:3519–3524.
  • Heinzel, T., Lavinsky R. M., Mullen T. M., Soderstrom M., Laherty C. D., Torchia J., Yang W. M., Brard G., Ngo S. D., Davie J. R., Seto E., Eisenman R. N., Rose D. W., Glass C. K., and Rosenfeld M. G.. 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387:43–48.
  • Huang, E. Y., Zhang J., Miska E. A., Guenther M. G., Kouzarides T., and Lazar M. A.. 2000. Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev. 14:45–54.
  • Hubbert, C., Guardiola A., Shao R., Kawaguchi Y., Ito A., Nixon A., Yoshida M., Wang X. F., and Yao T. P.. 2002. HDAC6 is a microtubule-associated deacetylase. Natur. 417:455–458.
  • Kedinger, M., Duluc I., Fritsch C., Lorentz O., Plateroti M., and Freund J. N.. 1998. Intestinal epithelial-mesenchymal cell interactions. Ann. N. Y. Acad. Sci. 859:1–17.
  • Kedinger, M., Simon-Assmann P. M., Lacroix B., Marxer A., Hauri H. P., and Haffen K.. 1986. Fetal gut mesenchyme induces differentiation of cultured intestinal endodermal and crypt cells. Dev. Biol. 113:474–483.
  • Khochbin, S., Verdel A., Lemercier C., and Seigneurin-Berny D.. 2001. Functional significance of histone deacetylase diversity. Curr. Opin. Genet. Dev. 11:162–166.
  • Kouzarides, T. 1999. Histone acetylases and deacetylases in cell proliferation. Curr. Opin. Genet. Dev. 9:40–48.
  • Kramer, O. H., Zhu P., Ostendorff H. P., Golebiewski M., Tiefenbach J., Peters M. A., Brill B., Groner B., Bach I., Heinzel T., and Gottlicher M.. 2003. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 22:3411–3420.
  • Lagger, G., O'Carroll D., Rembold M., Khier H., Tischler J., Weitzer G., Schuettengruber B., Hauser C., Brunmeir R., Jenuwein T., and Seiser C.. 2002. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 21:2672–2681.
  • Laherty, C. D., Yang W. M., Sun J. M., Davie J. R., Seto E., and Eisenman R. N.. 1997. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89:349–356.
  • Lee, D. Y., Hayes J. J., Pruss D., and Wolffe A. P.. 1993. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73–84.
  • Lu, J., McKinsey T. A., Zhang C. L., and Olson E. N.. 2000. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol. Cell 6:233–244.
  • Mal, A., Sturniolo M., Schiltz R. L., Ghosh M. K., and Harter M. L.. 2001. A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. EMBO J. 20:1739–1753.
  • Mannervik, M., and Levine M.. 1999. The Rpd3 histone deacetylase is required for segmentation of the Drosophila embryo. Proc. Natl. Acad. Sci. USA 96:6797–6801.
  • Martinez-Balbas, M. A., Bauer U. M., Nielsen S. J., Brehm A., and Kouzarides T.. 2000. Regulation of E2F1 activity by acetylation. EMBO J. 19:662–671.
  • Maunoury, R., Robine S., Pringault E., Huet C., Guenet J. L., Gaillard J. A., and Louvard D.. 1988. Villin expression in the visceral endoderm and in the gut anlage during early mouse embryogenesis. EMBO J. 7:3321–3329.
  • McKinsey, T. A., Zhang C. L., and Olson E. N.. 2001. Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 11:497–504.
  • Munster, P. N., Troso-Sandoval T., Rosen N., Rifkind R., Marks P. A., and Richon V. M.. 2001. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res. 61:8492–8497.
  • Nagy, L., Kao H. Y., Chakravarti D., Lin R. J., Hassig C. A., Ayer D. E., Schreiber S. L., and Evans R. M.. 1997. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380.
  • Ozawa, Y., Towatari M., Tsuzuki S., Hayakawa F., Maeda T., Miyata Y., Tanimoto M., and Saito H.. 2001. Histone deacetylase 3 associates with and represses the transcription factor GATA-2. Blood 98:2116–2123.
  • Phiel, C. J., Zhang F., Huang E. Y., Guenther M. G., Lazar M. A., and Klein P. S.. 2001. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276:36734–36741.
  • Puri, P. L., Iezzi S., Stiegler P., Chen T. T., Schiltz R. L., Muscat G. E., Giordano A., Kedes L., Wang J. Y., and Sartorelli V.. 2001. Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis. Mol. Cell 8:885–897.
  • Quaroni, A. 1985. Development of fetal rat intestine in organ and monolayer culture. J. Cell Biol. 100:1611–1622.
  • Richon, V. M., Sandhoff T. W., Rifkind R. A., and Marks P. A.. 2000. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. USA 97:10014–10019.
  • Sartorelli, V., Puri P. L., Hamamori Y., Ogryzko V., Chung G., Nakatani Y., Wang J. Y., and Kedes L.. 1999. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol. Cell 4:725–734.
  • Sealy, L., and Chalkley R.. 1978. The effect of sodium butyrate on histone modification. Cel. 14:115–121.
  • Shi, Y., and Mello C.. 1998. A CBP/p300 homolog specifies multiple differentiation pathways in Caenorhabditis elegans. Genes Dev. 12:943–955.
  • Simon, T. C., and Gordon J. I.. 1995. Intestinal epithelial cell differentiation: new insights from mice, flies and nematodes. Curr. Opin. Genet. Dev. 5:577–586.
  • Strahl, B. D., and Allis C. D.. 2000. The language of covalent histone modifications. Nature 403:41–45.
  • Taplick, J., Kurtev V., Kroboth K., Posch M., Lechner T., and Seiser C.. 2001. Homo-oligomerisation and nuclear localisation of mouse histone deacetylase 1. J. Mol. Biol. 308:27–38.
  • Taplick, J., Kurtev V., Lagger G., and Seiser C.. 1998. Histone H4 acetylation during interleukin-2 stimulation of mouse T cells. FEBS Lett. 436:349–352.
  • Turner, B. M. 2000. Histone acetylation and an epigenetic code. Bioessays 22:836–845.
  • Van Lint, C., Emilaiani S., and Verdin E.. 1996. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr. 5:245–254.
  • Velculescu, V. E., Zhang L., Vogelstein B., and Kinzler K. W.. 1995. Serial analysis of gene expression. Science 270:484–487.
  • Yang, W. M., Inouye C., Zeng Y., Bearss D., and Seto E.. 1996. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl. Acad. Sci. USA 93:12845–12850.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.