14
Views
42
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Association of Rad9 with Double-Strand Breaks through a Mec1-Dependent Mechanism

, , , &
Pages 3277-3285 | Received 10 Sep 2003, Accepted 19 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Abraham, R. T. 2001. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15:2177–2196.
  • Cortez, D., Guntuku S., Qin J., and Elledge S. J.. 2001. ATR and ATRIP: partners in checkpoint signaling. Science 294:1713–1716.
  • Du, L. L., Nakamura T. M., Moser B. A., and Russell P.. 2003. Retention but not recruitment of Crb2 at double-strand breaks requires Rad1 and Rad3 complexes. Mol. Cell. Biol. 23:6150–6158.
  • Durocher, D., Henckel J., Fersht A. R., and Jackson S. P.. 1999. The FHA domain is a modular phosphopeptide recognition motif. Mol. Cell 4:387–394.
  • Edwards, R. J., Bentley N. J., and Carr A. M.. 1999. A Rad3-Rad26 complex responds to DNA damage independently of other checkpoint proteins. Nat. Cell Biol. 1:393–398.
  • Elledge, S. J. 1996. Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672.
  • Emili, A. 1998. MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Mol. Cell 2:183–189.
  • Gietz, R. D., and Sugino A.. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534.
  • Gilbert, C. S., Green C. M., and Lowndes N. F.. 2001. Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol. Cell 8:129–136.
  • Green, C. M., Erdjument-Bromage H., Tempst P., and Lowndes N. F.. 2000. A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr. Biol. 10:39–42.
  • Katou, Y., Kanoh Y., Bando M., Noguchi H., Tanaka H., Ashikari T., Sugimoto K., and Shirahige K.. 2003. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424:1073–1083.
  • Kondo, T., Matsumoto K., and Sugimoto K.. 1999. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. Mol. Cell. Biol. 19:1136–1143.
  • Kondo, T., Wakayama T., Naiki T., Matsumoto K., and Sugimoto K.. 2001. Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science 5543:867–870.
  • Longhese, M. P., Foiani M., Muzi-Falconi M., Lucchini G., and Plevani P.. 1998. DNA damage checkpoint in budding yeast. EMBO J. 17:5525–5528.
  • Mallory, J. C., and Petes T. D.. 2000. Protein kinase activity of Tel1p and Mec1p, two Saccharomyces cerevisiae proteins related to the human ATM protein kinase. Proc. Natl. Acad. Sci. USA 97:13749–13754.
  • Melo, J. A., Cohen J., and Toczyski D. P.. 2001. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 21:2809–2821.
  • Morrow, D. M., Tagle D. A., Shiloh Y., Collins F. S., and Hieter P.. 1995. TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell 82:831–840.
  • Naiki, T., Shimomura T., Kondo T., Matsumoto K., and Sugimoto K.. 2000. Rfc5, in cooperation with Rad24, controls DNA damage checkpoints throughout the cell cycle in Saccharomyces cerevisiae. Mol. Cell. Biol. 20:5888–5896.
  • Nakada, D., Matsumoto K., and Sugimoto K.. 2003. ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes Dev. 17:1957–1962.
  • Nakada, D., Shimomura T., Matsumoto K., and Sugimoto K.. 2003. The ATM-related Tel1 protein of Saccharomyces cerevisiae controls a checkpoint response following phleomycin treatment. Nucleic Acids Res. 31:1715–1724.
  • Paciotti, V., Clerici M., Lucchini G., and Longhese M. P.. 2000. The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast. Genes Dev. 14:2046–2059.
  • Pellicioli, A., Lee S. E., Lucca C., Foiani M., and Haber J. E.. 2001. Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol. Cell 7:293–300.
  • Reid, R. J., Sunjevaric I., Keddache M., and Rothstein R.. 2002. Efficient PCR-based gene disruption in Saccharomyces strains using intergenic primers. Yeast 19:319–328.
  • Rouse, J., and Jackson S. P.. 2000. LCD1: an essential gene involved in checkpoint control and regulation of the MEC1 signalling pathway in Saccharomyces cerevisiae. EMBO J. 19:5793–5800.
  • Rouse, J., and Jackson S. P.. 2002. Lcd1p recruits Mec1p to DNA lesions in vitro and in vivo. Mol. Cell 9:857–869.
  • Saka, Y., Esashi F., Matsusaka T., Mochida S., and Yanagida M.. 1997. Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chk1. Genes Dev. 11:3387–3400.
  • Sanchez, Y., Bachant J., Wang H., Hu F., Liu D., Tetzlaff M., and Elledge S. J.. 1999. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 286:1166–1171.
  • Sanchez, Y., Desany B. A., Jones W. J., Liu Q., Wang B., and Elledge S. J.. 1996. Regulation of RAD53 by the ATM-like kinase MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271:357–360.
  • Schwartz, M. F., Duong J. K., Sun Z., Morrow J. S., Pradhan D., and Stern D. F.. 2002. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Mol. Cell 9:1055–1065.
  • Sugimoto, K., Ando S., Shimomura T., and Matsumoto K.. 1997. Rfc5, replication factor C component, is required for regulation of Rad53 protein kinase in the yeast checkpoint pathway. Mol. Cell. Biol. 17:5905–5914.
  • Sun, Z., Fay D. S., Marini F., Foiani M., and Stern D. F.. 1996. Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev. 10:395–406.
  • Sun, Z., Hsiao J., Fay D. S., and Stern D. F.. 1998. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281:272–274.
  • Toczyski, D. P., Galgoczy D. J., and Hartwell L. H.. 1997. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90:1097–1106.
  • Vialard, J. E., Gilbert C. S., Green C. M., and Lowndes N. F.. 1998. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J. 17:5679–5688.
  • Wakayama, T., Kondo T., Ando S., Matsumoto K., and Sugimoto K.. 2001. Pie1, a protein interacting with Mec1, controls cell growth and checkpoint responses in Saccharomyces cerevisiae. Mol. Cell. Biol. 21:755–764.
  • Weinert, T. A., and Hartwell L. H.. 1988. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317–322.
  • White, C. I., and Haber J. E.. 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9:663–673.
  • Zhao, X., Muller E. G. D., and Rothstein R.. 1998. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pool. Mol. Cell 2:329–340.
  • Zhou, B.-B. S., and Elledge S. J.. 2000. The DNA damage response: putting checkpoints in perspective. Nature 408:433–439.
  • Zou, L., and Elledge S. J.. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.