7
Views
8
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

In Vitro Processing of the 3′-Overhanging DNA in the Postcleavage Complex Involved in V(D)J Joining

, , , , , & show all
Pages 3692-3702 | Received 27 Oct 2003, Accepted 02 Feb 2004, Published online: 27 Mar 2023

REFERENCES

  • Adachi, Y., Mizuno S., and Yoshida M.. 1990. Efficient large-scale purification of non-histone chromosomal proteins HMG1 and HMG2 by using Polybuffer-exchanger PBE94. J. Chromatogr. 530:39–46.
  • Agrawal, A., and Schatz D. G.. 1997. RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 89:43–53.
  • Agrawal, A., Eastman Q. M., and Schatz D. G.. 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394:744–751.
  • Bogue, M. A., Wang C., Zhu C., and Roth D. B.. 1997. V(D)J recombination in Ku86-deficient mice: distinct effects on coding, signal, and hybrid joint formation. Immunity 7:37–47.
  • Clatworthy, A. E., Valencia M. A., Haber J. E., and Oettinger M. A.. 2003. V(D)J recombination and RAG-mediated transposition in yeast. Mol. Cell 12:489–499.
  • Difilippantonio, M. J., McMahan C. J., Eastman Q. M., Spanopoulou E., and Schatz D. G.. 1996. RAG1 mediates signal sequence recognition and recruitment of RAG2 in V(D)J recombination. Cell 87:253–262.
  • Ding, Q., Reddy Y. V., Wang W., Woods T., Douglas P., Ramsden D. A., Lees-Miller S. P., and Meek K.. 2003. Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair. Mol. Cell. Biol. 23:5836–5848.
  • Eastman, Q. M., Leu T. M., and Schatz D. G.. 1996. Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature 380:85–88.
  • Elkin, S. K., Matthews A. G., and Oettinger M. A.. 2003. The C-terminal portion of RAG2 protects against transposition in vitro. EMBO J. 22:1931–1938.
  • Engelman, A., Mizuuchi K., and Craigie R.. 1991. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67:1211–1221.
  • Frank, K. M., Sekiguchi J. M., Seidl K. J., Swat W., Rathbun G. A., Cheng H. L., Davidson L., Kangaloo L., and Alt F. W.. 1998. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 396:173–177.
  • Fugmann, S. D., Villey I. J., Ptaszek L. M., and Schatz D. G.. 2000. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Mol. Cell 5:97–107.
  • Gilfillan, S., Dierich A., Lemeur M., Benoist C., and Mathis D.. 1993. Mice lacking TdT: mature animals with an immature lymphocyte repertoire. Science 261:1175–1178.
  • Grawunder, U., Zimmer D., Fugmann S., Schwarz K., and Lieber M. R.. 1998. DNA ligase IV is essential for V(D)J recombination and DNA double-strand break repair in human precursor lymphocytes. Mol. Cell 2:477–484.
  • Gu, Y., Jin S., Gao Y., Weaver D. T., and Alt F. W.. 1997. Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination. Proc. Natl. Acad. Sci. USA 94:8076–8081.
  • Han, J. O., Steen S. B., and Roth D. B.. 1997. Ku86 is not required for protection of signal ends or for formation of nonstandard V(D)J recombination products. Mol. Cell. Biol. 17:2226–2234.
  • Hiom, K., and Gellert M.. 1997. A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage. Cell 88:65–72.
  • Hiom, K., and Gellert M.. 1998. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell 1:1011–1019.
  • Hiom, K., Melek M., and Gellert M.. 1998. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94:463–470.
  • Huye, L. E., Purugganan M. M., Jiang M. M., and Roth D. B.. 2002. Mutational analysis of all conserved basic amino acids in RAG-1 reveals catalytic, step arrest, and joining-deficient mutants in the V(D)J recombinase. Mol. Cell. Biol. 22:3460–3473.
  • Jones, J. M., and Gellert M.. 2001. Intermediates in V(D)J recombination: a stable RAG1/2 complex sequesters cleaved RSS ends. Proc. Natl. Acad. Sci. USA 90:12926–12931.
  • Kennedy, A. K., Guhathakurta A., Kleckner N., and Haniford D. B.. 1998. Tn10 transposition via a DNA hairpin intermediate. Cell 95:125–134.
  • Kim, D. R., Dai Y., Mundy C. L., Yang W., and Oettinger M. A.. 1999. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev. 13:3070–3080.
  • Komori, T., Okada A., Stewart V., and Alt F. W.. 1993. Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science 261:1171–1175.
  • Landree, M. A., Wibbenmeyer J. A., and Roth D. B.. 1999. Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Genes Dev. 13:3059–3069.
  • Lee, G. S., Neiditch M. B., Sinden R. R., and Roth D. B.. 2002. Targeted transposition by the V(D)J recombinase. Mol. Cell. Biol. 22:2068–2077.
  • Li, Z., Otevrel T., Gao Y., Cheng H.-L., Seed B., Stamato T. D., Taccioli G. E., and Alt F. W.. 1995. The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell 83:1079–1089.
  • Lieber, M., Hesse J. E., Lewis S., Bosma G. C., Rosenberg N., Mizuuchi K., Bosma M. J., and Gellert M.. 1988. The defect in murine severe combined immune deficiency: joining of signal sequences but not coding segments in V(D)J recombination. Cell 55:7–16.
  • Livak, F., and Schatz D. G.. 1997. Identification of V(D)J recombination coding end intermediates in normal thymocytes. J. Mol. Biol. 267:1–9.
  • Ma, Y., Pannicke U., Schwarz K., and Lieber M. R.. 2002. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108:781–794.
  • McBlane, J. F., van Gent D. C., Ramsden D. A., Romeo C., Cuomo C. A., Gellert M., and Oettinger M. A.. 1995. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83:387–395.
  • Melek, M., Gellert M., and van Gent D. C.. 1998. Rejoining of DNA by the RAG1 and RAG2 proteins. Science 280:301–303.
  • Melek, M., and Gellert M.. 2000. RAG1/2-mediated resolution of transposition intermediates: two pathways and possible consequences. Cell 101:625–633.
  • Moshous, D., Callebaut I., de Chasseval R., Corneo B., Cavazzana-Calvo M., Le Deist F., Tezcan I., Sanal O., Bertrand Y., Philippe N., Fischer A., and de Villartay J. P.. 2001. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105:177–186.
  • Nagawa, F., Ishiguro K., Tsuboi A., Yoshida T., Ishikawa A., Takemori T., Otsuka A. J., and Sakano H.. 1998. Footprint analysis of the RAG protein recombination signal sequence complex for V(D)J type recombination. Mol. Cell. Biol. 18:655–663.
  • Nagawa, F., Kodama M., Nishihara T., Ishiguro K., and Sakano H.. 2002. Footprint analysis of recombination signal sequences in the 12/23 synaptic complex of V(D)J recombination. Mol. Cell. Biol. 22:7217–7225.
  • Neiditch, M. B., Lee G. S., Landree M. A., and Roth D. B.. 2001. RAG transposase can capture and commit to target DNA before or after donor cleavage. Mol. Cell. Biol. 21:4302–4310.
  • Nussenzweig, A., Chen C., da Costa Soares V., Sanchez M., Sokol K., Nussenzweig M. C., and Li G. C.. 1996. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382:551–555.
  • Oettinger, M. A., Schatz D. G., Gerka C., and Baltimore D.. 1990. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248:1517–1523.
  • Perkins, E. J., Nair A., Cowley D. O., Van Dyke T., Chang Y., and Ramsden D. A.. 2002. Sensing of intermediates in V(D)J recombination by ATM. Genes Dev. 16:159–164.
  • Qiu, J. X., Kale S. B., Yarnell Schultz H., and Roth D. B.. 2001. Separation-of-function mutants reveal critical roles for RAG2 in both the cleavage and joining steps of V(D)J recombination. Mol. Cell 7:77–87.
  • Rooney, S., Sekiguchi J., Zhu C., Cheng H. L., Manis J., Whitlow S., DeVido J., Foy D., Chaudhuri J., Lombard D., and Alt F. W.. 2002. Leaky Scid phenotype associated with defective V(D)J. coding end processing in Artemis-deficient mice. Mol. Cell 10:1379–1390.
  • Roth, D. B., Menetski J. P., Nakajima P. B., Bosma M. J., and Gellert M.. 1992. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70:983–991.
  • Sadofsky, M. J. 2001. The RAG proteins in V(D)J recombination: more than just a nuclease. Nucleic Acids Res. 29:1399–1409.
  • Sakano, H., Huppi K., Heinrich G., and Tonegawa S.. 1979. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature 280:288–294.
  • Sakano, H., Maki R., Kurosawa Y., Roeder W., and Tonegawa S.. 1980. Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes. Nature 286:676–683.
  • Santagata, S., Besmer E., Villa A., Bozzi F., Allingham J. S., Sobacchi C., Haniford D. B., Vezzoni P., Nussenzweig M. C., Pan Z. Q., and Cortes P.. 1999. The RAG1/RAG2 complex constitutes a 3′ flap endonuclease: implications for junctional diversity in V(D)J and transpositional recombination. Mol. Cell 4:935–947.
  • Schatz, D. G., Oettinger M. A., and Baltimore D.. 1989. The V(D)J recombination activating gene, RAG-1. Cell 59:1035–1048.
  • Schlissel, M. S. 1998. Structure of nonhairpin coding-end DNA breaks in cells undergoing V(D)J recombination. Mol. Cell. Biol. 18:2029–2037.
  • Schlissel, M. S. 2002. Does artemis end the hunt for the hairpin-opening activity in V(D)J recombination? Cell 109:1–4.
  • Sekiguchi, J. A., Whitlow S., and Alt F. W.. 2001. Increased accumulation of hybrid V(D)J joins in cells expressing truncated versus full-length RAGs. Mol. Cell 8:1383–1390.
  • Spanopoulou, E., Zaitseva F., Wang F. H., Santagata S., Baltimore D., and Panayotou G.. 1996. The homeodomain region of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination. Cell 87:263–276.
  • Swanson, P. C., and Desiderio S.. 1998. V(D)J recombination signal recognition: distinct, overlapping DNA-protein contacts in complexes containing RAG1 with and without RAG2. Immunity 9:115–125.
  • Taccioli, G. E., Rathbun G., Oltz E., Stamato T., Jeggo P. A., and Alt F. W.. 1993. Impairment of V(D)J recombination in double-strand break repair mutants. Science 260:207–210.
  • Tsai, C. L., Chatterji M., and Schatz D. G.. 2003. DNA mismatches and GC-rich motifs target transposition by the RAG1/RAG2 transposase. Nucleic Acids Res. 31:6180–6190.
  • Tsai, C. L., Drejer A. H., and Schatz D. G.. 2002. Evidence of a critical architectural function for the RAG proteins in end processing, protection, and joining in V(D)J recombination. Genes Dev. 16:1934–1949.
  • Tsai, C. L., and Schatz D. G.. 2003. Regulation of RAG1/RAG2-mediated transposition by GTP and the C-terminal region of RAG2. EMBO J. 22:1922–1930.
  • van Gent, D. C., K. Mizuuchi, and M. Gellert. 1996. Similarities between initiation of V(D)J recombination and retroviral integration. Science 271:1592–1594.
  • van Gent, D. C., D. A. Ramsden, and M. Gellert. 1996. The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell 85:107–113.
  • Yarnell Schultz, H., M. A. Landree, J. X. Qiu, S. B. Kale, and D. B. Roth. 2001. Joining-deficient RAG1 mutants block V(D)J recombination in vivo and hairpin opening in vitro. Mol. Cell 7:65–75.
  • Zhu, C., Bogue M. A., Lim D.-S., Hasty P., and Roth D. B.. 1996. Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell 86:379–389.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.