9
Views
9
CrossRef citations to date
0
Altmetric
Gene Expression

XIC Is Required for Siamois Activity and Dorsoanterior Development

&
Pages 5061-5072 | Received 14 Dec 2004, Accepted 23 Mar 2005, Published online: 27 Mar 2023

REFERENCES

  • Blitz, I. L., and K. W.-Y. Cho. 1995. Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle. Development 121:993–1004.
  • Bouwmeester, T., S.-H. Kim, Y. Sasai, B. Lu, and E. M. DeRobertis. 1996. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382:595–601.
  • Bradley, L. C., A. Snape, S. Bhatt, and D. G. Wilkinson. 1993. The structure and expression of the Xenopus Krox-20 gene: conserved and divergent patterns of expression in rhombomeres and neural crest. Mech. Dev. 40:73–84.
  • Brannon, M., M. Gomperts, L. Sumoy, R. T. Moon, and D. Kimelman. 1997. A B-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev. 11:2359–2370.
  • Carnac, G., L. Kodjabachian, J. B. Gurdon, and P. Lemaire. 1996. The homeobox gene Siamois is a target of the Wnt doralization pathway and triggers organiser activity in the absence of mesoderm. Development 122:3055–3065.
  • Chen, A. C.-M., N. Kraut, M. Groudine, and H. Weintraub. 1996. I-mf, a novel myogenic repressor, interacts with members of the MyoD family. Cell 86:731–741.
  • Christian, J. L., B. J. Gavin, A. P. McMahon, and R. T. Moon. 1991. Isolation of cDNAs partially encoding four Xenopus wnt-1/Int-1 related proteins and characterization of their transient expression during embryonic development. Dev. Biol. 143:230–234.
  • Christian, J. L., and R. T. Moon. 1993. Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev. 7:13–28.
  • Cui, Y., J. D. Brown, R. T. Moon, and J. L. Christian. 1995. Xwnt-8b: a maternally expressed Xenopus Wnt gene with a potential role in establishing the dorsoventral axis. Development 121:2177–2186.
  • Darken, R. S., and P. A. Wilson. 2001. Axis induction by Wnt signaling: target promoter responsiveness regulates competence. Dev. Biol. 234:42–54.
  • Darras, S., Y. Marikawa, R. P. Elinson, and P. Lemaire. 1997. Animal and vegetal pole cells of early Xenopus embryos respond differently to maternal dorsal determinants: implications for the patterning of the organiser. Development 124:4275–4286.
  • DeRobertis, E. M., J. Larrain, M. Oelgeschlager, and O. Wessely. 2000. The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nat. Rev. Genet. 1:172–181.
  • Engleka, M. J., and D. S. Kessler. 2001. Siamois cooperates with TGFΒ signals to induce the complete function of the Spemann-Mangold organizer. Int. J. Dev. Biol. 45:241–250.
  • Fan, M. J., and S. Y. Sokol. 1997. A role for Siamois in Spemann organizer formation. Development 124:2581–2589.
  • Gawantka, V., H. Delius, K. Hirschfield, C. Blumenstock, and C. Niehrs. 1995. Antagonizing the Spemann organizer: role of the homeobox gene, Xvent-1. EMBO J. 14:6268–6279.
  • Hamilton, F. S., G. N. Wheeler, and S. Hoppler. 2001. Difference in XTcf3 dependency accounts for change in response to B-catenin-mediated Wnt signalling in Xenopus blastula. Development 128:2063–2073.
  • Harland, R., and J. Gerhart. 1997. Formation and function of Spemann's organizer. Annu. Rev. Cell Dev. Biol. 13:611–667.
  • Heasman, J., M. Kofron, and C. Wylie. 2000. Β-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev. Biol. 222:124–134.
  • Hemmati-Brivanlou, A., J. R. de la Torre, C. Holt, and R. Harland. 1991. Cephalic expression and molecular characterization of. Xenopus En-2. Development 111:715–724.
  • Hensey, C., and J. Gautier. 1998. Programmed cell death during Xenopus development: a spatio-temporal analysis. Dev. Biol. 203:36–48.
  • Hopwood, N. D., A. Pluck, and J. B. Gurdon. 1989. Myod expression in the forming somites is an early response to mesoderm induction in Xenopus embryos. EMBO J. 8:3409–3417.
  • Houston, D. W., M. Kofron, E. Resnik, R. Langland, O. Destree, C. Wylie, and J. Heasman. 2002. Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal XTcf3. Development 129:4015–4025.
  • Hurlstone, A., and H. Clevers. 2002. T-cell factors: turn-ons and turn-offs. EMBO J. 21:2303–2311.
  • Jones, E. A., and H. R. Woodland. 1986. Development of the ectoderm in Xenopus: tissue specification and the role of cell association and division. Cell 44:345–355.
  • Kelly, G. M., D. W. Eib, and R. T. Moon. 1991. Histological preparation of Xenopus laevis oocytes and embryos. Methods Cell Biol. 36:389–417.
  • Kessler, D. S. 1997. Siamois is required for formation of Spemann's organizer. Proc. Natl. Acad. Sci. USA 94:13017–13022.
  • Kintner, C. R., and D. A. Melton. 1999. Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction. Development 125:311–325.
  • Kodjabachian, L., and P. Lemaire. 2001. Siamois functions in the early blastula to induce Spemann's organiser. Mech. Dev. 108:71–79.
  • Laurent, M. N., I. L. Blitz, C. Hashimoto, U. Rothbacher, and K. W.-Y. Cho. 1997. The Xenopus homeobox gene Twin mediates Wnt induction of Goosecoid in establishment of Spemann's organizer. Development 124:4905–4916.
  • Lemaire, P., N. Garrett, and J. B. Gurdon. 1995. Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81:85–94.
  • McGrew, L. L., K.-I. Takemaru, R. Bates, and R. T. Moon. 1999. Direct regulation of the Xenopus engrailed-2 promoter by the Wnt signaling pathway, and a molecular screen for Wnt-responsive genes, confirm a role for wnt signaling during neural patterning in Xenopus. Mech. Dev. 87:21–32.
  • McKendry, R., S.-C. Hsu, R. M. Harland, and R. Grosschedl. 1997. LEF-1/TCF proteins mediate Wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev. Biol. 192:420–431.
  • Molenaar, M., M. van de Wetering, M. Oosterwegel, J. Peterson-Maduro, S. Godsave, V. Korinek, J. Roose, O. Destree, and H. Clevers. 1996. XTcf-3 transcription factor mediates Β-catenin-induced axis formation in Xenopus embryos. Cell 86:391–399.
  • Moon, R. T., and D. Kimelman. 1998. From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. BioEssays 20:536–545.
  • Niehrs, C. 2004. Regionally specific induction by the Spemann-Mangold organizer. Nat. Rev. Genet. 5:425–434.
  • Nieuwkoop, P. D., and J. Faber. 1967. Normal table of Xenopus laevis (Daudin). North Holland, Amsterdam, The Netherlands.
  • Piccolo, S., E. Agius, L. Leyns, S. Bhattacharyya, H. Grunz, T. Bouwmeester, and E. M. De Robertis. 1999. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397:707–710.
  • Rupp, R. A. W., L. Snider, and H. Weintraub. 1994. Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev. 8:1311–1323.
  • Sadowski, I., and M. Ptashne. 1989. A vector for expressing GAL4(1-147) fusions in mammalian cells. Nucleic Acids Res. 17:7539–7540.
  • Sasai, Y., B. Lu, H. Steinbeisser, D. Geissert, L. K. Gont, and E. M. De Robertis. 1994. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790.
  • Sive, H., R. M. Grainger, and R. R. Harland. 2000. Early development of Xenopus laevis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Smith, J. C., B. M. J. Price, J. B. A. Green, D. Weigel, and B. G. Herrman. 1991. Expression of a Xenopus homologue of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67:79–87.
  • Smith, W. C., R. Mckendry, S. Ribisi, and R. Harland. 1995. A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell 82:37–46.
  • Snider, L., H. Thirlwell, J. R. Miller, R. T. Moon, M. Groudine, and S. J. Tapscott. 2001. Inhibition of Tcf3 binding by I-mfa domain proteins. Mol. Cell. Biol. 21:1866–1873.
  • Sokol, S. Y. 1999. Wnt signaling and dorsoventral axis specification in vertebrates. Curr. Opin. Genet. Dev. 9:405–410.
  • Stewart, R. M., and J. Gerhart. 1990. The anterior extent of dorsal development of the Xenopus embryonic axis depends on the quantity of organizer in the late blastula. Development 122:363–372.
  • von Dassow, G., J. E. Schmidt, and D. Kimelman. 1993. Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeobox gene. Genes Dev. 7:355–366.
  • Watabe, T., S. Kim, A. Candia, U. Rothbacher, C. Hashimoto, K. Inoue, and K. W.-Y. Cho. 1995. Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev. 9:3038–3050.
  • Wessely, O., J. I. Kim, D. Geissert, U. Tran, and E. M. De Robertis. 2004. Analysis of Spemann organizer formation in Xenopus embryos by cDNA macroarrays. Dev. Biol. 269:552–566.
  • Yamamoto, S., H. Hikasa, H. Ono, and M. Taira. 2003. Molecular link in the sequential induction of the Spemann organizer: direct activation of the cerberus gene by Xlim-1, Xotx2, and Siamois, immediately downstream from Nodal and Wnt signaling. Dev. Biol. 257:190–204.
  • Yang, J., C. Tan, R. S. Darken, P. A. Wilson, and P. S. Klein. 2002. B-catenin/Tcf-regulated transcription prior to the midblastula transition. Development 129:5743–5752.
  • Yost, C., M. Torres, J. R. Miller, E. Huang, D. Kimelman, and R. T. Moon. 1996. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10:1443–1454.
  • Zaraisky, A. V. Ecochard, O. V. Kazanskaya, S. A. Lukyanov, I. V. Fesenko, and A.-M. Duprat. 1995. The homeobox gene XANF-1 may control development of the Spemann organizer. Development 121:3839–3847.
  • Zhang, J., D. W. Houston, M. L. King, C. Payne, C. Wylie, and J. Heasman. 1998. The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94:515–524.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.