45
Views
48
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Mice with a Disruption of the Thrombospondin 3 Gene Differ in Geometric and Biomechanical Properties of Bone and Have Accelerated Development of the Femoral Head

, , &
Pages 5599-5606 | Received 06 Jan 2005, Accepted 27 Mar 2005, Published online: 27 Mar 2023

REFERENCES

  • Adams, J. C. 2001. Thrombospondins: multifunctional regulators of cell interactions. Annu. Rev. Cell Dev. Biol. 17:25–51.
  • Adolph, K. W. 1999. Relative abundance of thrombospondin 2 and thrombospondin 3 mRNAs in human tissues. Biochem. Biophys. Res. Commun. 258:792–796.
  • Beaupre, G. S., S. S. Stevens, and D. R. Carter. 2000. Mechanobiology in the development, maintenance, and degeneration of articular cartilage. J. Rehabil. Res. Dev. 37:145–151.
  • Bornstein, P., S. Devarayalu, S. Edelhoff, and C. M. Disteche. 1993. Isolation and characterization of the mouse thrombospondin 3 (Thbs3) gene. Genomics 15:607–613.
  • Bornstein, P., C. E. McKinney, M. E. LaMarca, S. Winfield, T. Shingu, S. Devarayalu, H. L. Vos, and E. I. Ginns. 1995. Metaxin, a gene contiguous to both thrombospondin 3 and glucocerebrosidase, is required for embryonic development in the mouse: implications for Gaucher disease. Proc. Natl. Acad. Sci. USA 92:4547–4551.
  • Bornstein, P., and E. H. Sage. 1994. Thrombospondins. Methods Enzymol. 245:62–85.
  • Brodt, M. D., C. B. Ellis, and M. J. Silva. 1999. Growing C57BL/6 mice increase whole bone mechanical properties by increasing geometric and material properties. J. Bone Miner. Res. 14:2159–2166.
  • Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
  • Collins, M., and P. Bornstein. 1996. SP1-binding elements, within the common metaxin-thrombospondin 3 intergenic region, participate in the regulation of the metaxin gene. Nucleic Acids Res. 24:3661–3669.
  • Collins, M., P. Rojnuckarin, Y. H. Zhu, and P. Bornstein. 1998. A far upstream, cell type-specific enhancer of the mouse thrombospondin 3 gene is located within intron 6 of the adjacent metaxin gene. J. Biol. Chem. 273:21816–21824.
  • Cremer, M. A., E. F. Rosloniec, and A. H. Kang. 1998. The cartilage collagens: a review of their structure, organization, and role in the pathogenesis of experimental arthritis in animals and in human rheumatic disease. J. Mol. Med. 76:275–288.
  • Engel, J. 2004. Role of oligomerization domains in thrombospondins and other extracellular matrix proteins. Int. J. Biochem. Cell Biol. 36:997–1004.
  • Felisbino, S. L., and H. F. Carvalho. 2001. Growth cartilage calcification and formation of bone trabeculae are late and dissociated events in the endochondral ossification of Rana catesbeiana. Cell Tissue Res. 306:319–323.
  • Guo, Y., D. Bozic, V. N. Malashkevich, R. A. Kammerer, T. Schulthess, and J. Engel. 1998. All-trans retinol, vitamin D and other hydrophobic compounds bind in the axial pore of the five-stranded coiled-coil domain of cartilage oligomeric matrix protein. EMBO J. 17:5265–5272.
  • Hankenson, K. D., S. D. Bain, T. R. Kyriakides, E. A. Smith, S. A. Goldstein, and P. Bornstein. 2000. Increased marrow-derived osteoprogenitor cells and endosteal bone formation in mice lacking thrombospondin 2. J. Bone Miner. Res. 15:851–862.
  • Holden, P., R. S. Meadows, K. L. Chapman, M. E. Grant, K. E. Kadler, and M. D. Briggs. 2001. Cartilage oligomeric matrix protein interacts with type IX collagen, and disruptions to these interactions identify a pathogenetic mechanism in a bone dysplasia family. J. Biol. Chem. 276:6046–6055.
  • Iruela-Arispe, M. L., D. J. Liska, E. H. Sage, and P. Bornstein. 1993. Differential expression of thrombospondin 1, 2, and 3 during murine development. Dev. Dyn. 197:40–56.
  • Kodama, Y., Y. Umemura, S. Nagasawa, W. G. Beamer, L. R. Donahue, C. R. Rosen, D. J. Baylink, and J. R. Farley. 2000. Exercise and mechanical loading increase periosteal bone formation and whole bone strength in C57BL/6J mice but not in C3H/Hej mice. Calcif. Tissue Int. 66:298–306.
  • Kuhn, J. L., S. A. Goldstein, L. A. Feldkamp, R. W. Goulet, and G. Jesion. 1990. Evaluation of a microcomputed tomography system to study trabecular bone structure. J. Orthop. Res. 8:833–842.
  • Laird, P. W., A. Zijderveld, K. Linders, M. A. Rudnicki, R. Jaenisch, and A. Berns. 1991. Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 19:4293.
  • Liu, X., H. Wu, J. Loring, S. Hormuzdi, C. M. Disteche, P. Bornstein, and R. Jaenisch. 1997. Trisomy eight in ES cells is a common potential problem in gene targeting and interferes with germ line transmission. Dev. Dyn. 209:85–91.
  • Malashkevich, V. N., R. A. Kammerer, V. P. Efimov, T. Schulthess, and J. Engel. 1996. The crystal structure of a five-stranded coiled coil in COMP: a prototype ion channel. Science 274:761–765.
  • Ozbek, S., J. Engel, and J. Stetefeld. 2002. Storage function of cartilage oligomeric matrix protein: the crystal structure of the coiled-coil domain in complex with vitamin D(3). EMBO J. 21:5960–5968.
  • Qabar, A., L. Derick, J. Lawler, and V. Dixit. 1995. Thrombospondin 3 is a pentameric molecule held together by interchain disulfide linkage involving two cysteine residues. J. Biol. Chem. 270:12725–12729.
  • Qabar, A. N., Z. Lin, F. W. Wolf, K. S. O'Shea, J. Lawler, and V. M. Dixit. 1994. Thrombospondin 3 is a developmentally regulated heparin binding protein. J. Biol. Chem. 269:1262–1269.
  • Svensson, L., A. Aszodi, D. Heinegard, E. B. Hunziker, F. P. Reinholt, R. Fassler, and A. Oldberg. 2002. Cartilage oligomeric matrix protein-deficient mice have normal skeletal development. Mol. Cell. Biol. 22:4366–4371.
  • Thur, J., K. Rosenberg, D. P. Nitsche, T. Pihlajamaa, L. Ala-Kokko, D. Heinegard, M. Paulsson, and P. Maurer. 2001. Mutations in cartilage oligomeric matrix protein causing pseudoachondroplasia and multiple epiphyseal dysplasia affect binding of calcium and collagen I, II, and IX. J. Biol. Chem. 276:6083–6092.
  • Tucker, R. P., C. Hagios, R. Chiquet-Ehrismann, and J. Lawler. 1997. In situ localization of thrombospondin-1 and thrombospondin-3 transcripts in the avian embryo. Dev. Dyn. 208:326–337.
  • Turner, C. H., Y. F. Hsieh, R. Muller, M. L. Bouxsein, D. J. Baylink, C. J. Rosen, M. D. Grynpas, L. R. Donahue, and W. G. Beamer. 2000. Genetic regulation of cortical and trabecular bone strength and microstructure in inbred strains of mice. J. Bone Miner. Res. 15:1126–1131.
  • Urry, L. A., C. A. Whittaker, M. Duquette, J. Lawler, and D. W. DeSimone. 1998. Thrombospondins in early Xenopus embryos: dynamic patterns of expression suggest diverse roles in nervous system, notochord, and muscle development. Dev. Dyn. 211:390–407.
  • Vos, H. L., S. Devarayalu, Y. de Vries, and P. Bornstein. 1992. Thrombospondin 3 (Thbs3), a new member of the thrombospondin gene family. J. Biol. Chem. 267:12192–12196.
  • Vos, H. L., M. Mockensturm-Wilson, P. M. Rood, A. M. Maas, T. Duhig, S. J. Gendler, and P. Bornstein. 1995. A tightly organized, conserved gene cluster on mouse chromosome 3 (E3-F1). Mamm. Genome 6:820–822.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.