39
Views
56
CrossRef citations to date
0
Altmetric
Chromosome Structure and Dynamics

Double-Strand Break Formation by the RAG Complex at the Bcl-2 Major Breakpoint Region and at Other Non-B DNA Structures In Vitro

, , &
Pages 5904-5919 | Received 22 Nov 2004, Accepted 10 Apr 2005, Published online: 27 Mar 2023

REFERENCES

  • Agrawal, A., Q. M. Eastman, and D. G. Schatz. 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394:744–751.
  • Bacolla, A., A. Jaworski, J. E. Larson, J. P. Jakupciak, N. Chuzhanova, S. S. Abeysinghe, C. D. O'Connell, D. N. Cooper, and R. D. Wells. 2004. Breakpoints of gross deletions coincide with non-B DNA conformations. Proc. Natl. Acad. Sci. USA 101:14162–14167.
  • Bakhshi, A., J. J. Wright, W. Graninger, M. Seto, J. Owens, J. Cossman, J. P. Jensen, P. Goldman, and S. J. Korsmeyer. 1987. Mechanism of the t(14;18) chromosomal translocation: structural analysis of both derivative 14 and 18 reciprocal partners. Proc. Natl. Acad. Sci. USA 84:2396–2400.
  • Besmer, E., J. Mansilla-Soto, S. Cassard, D. J. Sawchuk, G. Brown, M. Sadofsky, S. M. Lewis, M. C. Nussenzweig, and P. Cortes. 1998. Hairpin coding end opening is mediated by the recombination activating genes RAG1 and RAG2. Mol. Cell 2:817–828.
  • Buchonnet, G., F. Jardin, N. Jean, P. Bertrand, F. Parmentier, S. Tison, S. Leprete, N. Contenin, P. Lenain, A. Stamatoullas-Bastard, H. Tilly, and C. Bastard. 2002. Distribution of bcl-2 breakpoints in follicular lymphoma and correlation with clinical features: specific subtypes or same disease. Leukemia 16:1852–1856.
  • Elkin, S. K., A. G. Matthews, and M. A. Oettinger. 2003. The C-terminal portion of RAG2 protects against transposition in vitro. EMBO J. 8:1931–1938.
  • Felix, C. A. 2001. Leukemias related to treatment with DNA topoisomerase II inhibitors. Med. Pediatr. Oncol. 36:525–535.
  • Friedberg, E. C., G. C. Walker, and W. Siede. 1995. DNA repair and mutagenesis. ASM Press, Washington, D.C.
  • Fugmann, S. D., A. I. Lee, P. E. Shockett, I. J. Villey, and D. G. Schatz. 2000. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18:495–527.
  • Gellert, M. 2002. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 71:101–132.
  • Grawunder, U., and M. R. Lieber. 1997. A complex of RAG-1 and RAG-2 persists on the DNA after single-strand cleavae at V(D)J recombination signal sequences. Nucleic Acids Res. 25:1375–1382.
  • Hiom, K., M. Melek, and M. Gellert. 1998. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94:463–470.
  • Jager, U., S. Bocskor, T. Le, G. Mitterbauer, I. Bolz, A. Chott, A. Kneba, C. Mannhalter, and B. Nadel. 2000. Follicular lymphomas BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood 95:3520–3529.
  • Karanjawala, Z. E., N. Murphy, D. R. Hinton, C.-L. Hsieh, and M. R. Lieber. 2002. Oxygen metabolism causes chromosome breaks and is associated with the neuronal apoptosis observed in double-strand break repair mutants. Curr. Biol. 12:397–402.
  • Kirsch, I. R. (ed.). 1993. The causes and consequences of chromosomal translocations. CRC, Boca Raton, Fla.
  • Lee, G. S., M. B. Neiditch, S. S. Salus, and D. B. Roth. 2004. RAG proteins shepherd double-strand breaks to a specific pathway, suppressing error-prone repair, but RAG nicking initiates homologous recombination. Cell 16:171–184.
  • Lee, G. S., M. B. Neiditch, R. R. Sinden, and D. B. Roth. 2002. Targeted transposition by the V(D)J recombinase. Mol. Cell. Biol. 22:2068–2077.
  • Lewis, S. M. 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 56:27–150.
  • Lewis, S. M., E. Agard, S. Suh, and L. Czyzyk. 1997. Cryptic signals and the fidelity of V(D)J joining. Mol. Cell. Biol. 17:3125–3136.
  • Lieber, M. R. 1993. The role of site-directed recombinases in physiologic and pathologic chromosomal rearrangements, p. 239–275. In I. Kirsch (ed.), The causes and consequences of chromosomal aberrations. CRC Press, Boca Raton, Fla.
  • Lin, W.-C., and S. Desiderio. 1994. Cell cycle regulation of RAG-2 V(D)J recombinase. Proc. Natl. Acad. Sci. USA 91:2733–2737.
  • Lin, W.-C., and S. Desiderio. 1993. Regulation of V(D)J recombination activator protein RAG-2 by phosphorylation. Science 260:953–959.
  • Marculescu, R., T. Le, P. Simon, U. Jaeger, and B. Nadel. 2002. V(D)J-mediated translocations in lymphoid neoplasms: a functional assessment of genomic instability by cryptic sites. J. Exp. Med. 195:85–98.
  • Melek, M., and M. Gellert. 2000. RAG 1/2-mediated resolution of transposition intermediates: two pathways and possible consequences. Cell 101:625–633.
  • Messier, T. L., J. P. O'Neill, S.-M. Hou, J. A. Nicklas, and B. A. Finette. 2003. In vivo transposition mediated by V(D)J recombinase in human T lymphocytes. EMBO J. 22:1381–1388.
  • Myung, K., A. Datta, and R. D. Kolodner. 2001. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104:397–408.
  • Nishihara, T., F. Nagawa, H. Nishizumi, M. Kodama, S. Hirose, R. Hayashi, and H. Sakano. 2004. In vitro processing of the 3′-overhanging DNA in the postcleavage complex involved in V(D)J joining. Mol. Cell. Biol. 24:3692–3702.
  • Raghavan, S. C., S. Houston, B. G. Hegde, R. Langen, I. S. Haworth, and M. R. Lieber. 2004. Stability and strand asymmetry in the non-B DNA structure at the bcl-2 major breakpoint region. J. Biol. Chem. 279:46213–46225.
  • Raghavan, S. C., I. R. Kirsch, and M. R. Lieber. 2001. Analysis of the V(D)J recombination efficiency at lymphoid chromosomal translocation breakpoints. J. Biol. Chem. 276:29126–29133.
  • Raghavan, S. C., and M. R. Lieber. 2004. Chromosomal translocations and non-B DNA structures in the human genome. Cell Cycle 3:762–768.
  • Raghavan, S. C., P. C. Swanson, X. Wu, C.-L. Hsieh, and M. R. Lieber. 2004. A non-B-DNA structure at the Bcl-2 major break point region is cleaved by the RAG complex. Nature 428:88–93.
  • Ramsden, D. A., J. F. McBlane, D. C. van Gent, and M. Gellert. 1996. Distinct DNA sequence and structure requirements for the two steps of V(D)J recombination signal cleavage. EMBO J. 15:3197–3206.
  • Roth, D. B. 2003. Restraining the V(D)J recombinase. Nat. Rev. Immunol. 3:656–666.
  • Roth, D. B., and N. L. Craig. 1998. VDJ recombination: a transposase goes to work. Cell 94:411–414.
  • Santagata, S., E. Besmer, A. Villa, F. Bozzi, J. S. Allingham, C. Sobacchi, D. B. Haniford, P. Vezzoni, M. C. Nussenzweig, Z. Q. Pan, and P. Cortes. 1999. The RAG1/RAG2 complex constitutes a 3′ flap endonuclease: implications for junctional diversity in V(D)J and transpositional recombination. Mol. Cell 4:935–947.
  • Shinkura, R., M. Tian, C. Khuong, K. Chua, E. Pinaud, and F. W. Alt. 2003. The influence of transcriptional orientation on endogenous switch region function. Nat. Immunol. 4:435–441.
  • Shockett, P. E., and D. G. Schatz. 1999. DNA hairpin opening mediated by the RAG1 and RAG2 proteins. Mol. Cell. Biol. 19:4159–4166.
  • Swanson, P. C. 2004. The bounty of RAGs: recombination signal complexes and reaction outcomes. Immunol. Rev. 200:90–114.
  • Swanson, P. C. 2001. The DDE motif in RAG-1 is contributed in trans to a single active site that catalyzes the nicking and transesterification steps of V(D)J recombination. Mol. Cell. Biol. 21:449–458.
  • Tsai, C.-L., and D. G. Schatz. 2003. Regulation of RAG1/RAG2-mediated transposition by GTP and the C-terminal region of RAG2. EMBO J. 22:1922–1930.
  • Tsai, C. L., M. Chatterji, and D. G. Schatz. 2003. DNA mismatches and GC-rich motifs target transposition by the RAG1/RAG2 transposase. Nucleic Acids Res. 31:6180–6190.
  • Wyatt, R. T., R. A. Rudders, A. Zelenetz, R. A. Delellis, and T. G. Krontiris. 1992. BCL2 oncogene translocation is mediated by a χ-like consensus. J. Exp. Med. 175:1575–1588.
  • Yu, K., F. Chedin, C.-L. Hsieh, T. E. Wilson, and M. R. Lieber. 2003. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4:442–451.
  • Yu, K., and M. R. Lieber. 2000. The nicking step of V(D)J recombination is independent of synapsis: implications for the immune repertoire. Mol. Cell. Biol. 20:7914–7921.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.