42
Views
34
CrossRef citations to date
0
Altmetric
Gene Expression

Transforming Growth Factor β2 Is a Neuronal Death-Inducing Ligand for Amyloid-β Precursor Protein

, , , , , , , , & show all
Pages 9304-9317 | Received 27 May 2005, Accepted 09 Aug 2005, Published online: 27 Mar 2023

REFERENCES

  • Amara, F. M., A. Junaid, R. R. Clough, and B. Liang. 1999. TGF-β1, regulation of Alzheimer amyloid precursor protein mRNA expression in a normal human astrocyte cell line: mRNA stabilization. Brain Res. Mol. Brain Res. 71:42–49.
  • Armstrong, R. A. 1994. Differences in beta-amyloid (β/A4) deposition in human patients with Down's syndrome and sporadic Alzheimer's disease. Neurosci. Lett. 169:133–136.
  • Bodmer, S., M. B. Podlisny, D. J. Selkoe, I. Heid, and A. Fontana. 1990. Transforming growth factor-β bound to soluble derivatives of the β amyloid precursor protein of Alzheimer's disease. Biochem. Biophys. Res. Commun. 171:890–897.
  • Cairns, N. J., A. Chadwick, P. L. Lantos, R. Levy, and M. N. Rossor. 1993. βA4 protein deposition in familial Alzheimer's disease with the mutation in codon 717 of the βA4 amyloid precursor protein gene and sporadic Alzheimer's disease. Neurosci. Lett. 149:137–140.
  • Chalazonitis, A., J. Kalberg, D. R. Twardzik, R. S. Morrison, and J. A. Kessler. 1992. Transforming growth factor β has neurotrophic actions on sensory neurons in vitro and is synergistic with nerve growth factor. Dev. Biol. 152:121–132.
  • Chao, C. C., S. Hu, W. H. Frey, T. A. Ala, W. W. Tourtellotte, and P. K. Peterson. 1994. Transforming growth factor β in Alzheimer's disease. Clin. Diagn. Lab. Immunol. 1:109–110.
  • Cheifetz, S., J. A. Weatherbee, M. L. Tsang, J. K. Anderson, J. E. Mole, R. Lucas, and J. Massagué. 1987. The transforming growth factor-β system, a complex pattern of cross-reactive ligands and receptors. Cell 48:409–415.
  • Citron, M., T. Oltersdorf, C. Haass, L. McConlogue, A. Y. Hung, P. Seubert, C. Vigo-Pelfrey, I. Lieberburg, and D. J. Selkoe. 1992. Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increases β-protein production. Nature 360:672–674.
  • Flanders, K. C., G. Lüdecke, S. Engels, D. S. Cissel, A. B. Roberts, P. Kondaiah, R. Lafayatis, M. B. Sporn, and K. Unsicker. 1991. Localizations and actions of transforming growth factor-βs in the embryonic nervous system. Development 113:183–191.
  • Flanders, K. C., C. F. Lippa, T. W. Smith, D. A. Pollen, and M. B. Sporn. 1995. Altered expression of transforming growth factor-β in Alzheimer's disease. Neurology 45:1561–1569.
  • Gelinas, D. S., K. DaSilva, D. Fenili, P. St. George-Hyslop, and J. McLaurin. 2004. Immunotherapy for Alzheimer's disease. Proc. Natl. Acad. Sci. USA 101:14657–14662.
  • Gray, C. W., and A. J. Patel. 1993. Regulation of β-amyloid precursor protein isoform mRNAs by transforming growth factor-β1 and interleukin-1β in astrocytes. Brain Res. Mol. Brain Res. 19:251–256.
  • Hardy, J., and D. J. Selkoe. 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353–356.
  • Hashimoto, Y., T. Niikura, Y. Ito, and I. Nishimoto. 2000. Multiple mechanisms underlie neurotoxicity by different types of Alzheimer's disease mutations of amyloid precursor protein. J. Biol. Chem. 275:34541–34551.
  • Hashimoto, Y., T. Niikura, T. Chiba, E. Tsukamoto, H. Kadowaki, H. Nishitoh, Y. Yamagishi, M. Ishizaka, M. Yamada, M. Nawa, K. Terashita, S. Aiso, H. Ichijo, and I. Nishimoto. 2003. The cytoplasmic domain of Alzheimer's amyloid precursor protein causes sustained ASK1/JNK-mediated neurotoxic signal via dimerization. J. Pharmacol. Exp. Ther. 306:889–902.
  • Jennings, M. T., and J. A. Pietenpol. 1998. The role of transforming growth factor β in glioma progression. J. Neurooncol. 36:123–140.
  • Kang, J., H. G. Lemaire, A. Unterbeck, J. M. Salbaum, C. L. Masters, K. H. Grzeschik, G. Multhaup, K. Beyreuther, and B. Muller-Hill. 1987. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736.
  • Kawasumi, M., T. Chiba, M. Yamada, M. Miyamae-Kaneko, M. Matsuoka, J. Nakahara, T. Tomita, T. Iwatsubo, S. Kato, S. Aiso, and I. Nishimoto, and K. Kouyama. 2004. Targeted introduction of V642I mutation in amyloid precursor protein gene causes functional abnormality resembling early stage of Alzheimer's disease in aged mice. Eur. J. Neurosci. 19:2826–2838.
  • Krieglstein, K., C. Suter-Crazzolara, W. H. Fischer, and K. Unsicker. 1995. TGF-β superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J. 14:736–742.
  • Krieglstein, K., S. Richter, L. Farkas, N. Schuster, N. Dunker, R. W. Oppenheim, and K. Unsicker. 2000. Reduction of endogenous transforming growth factors β prevents ontogenetic neuron death. Nat. Neurosci. 3:1085–1090.
  • Lesné, S., F. Docagne, C. Gabrie, G. Liot, D. K. Lahiri, L. Buée, L. Plawinski, A. Delacourte, E. T. MacKenzie, A. Buisson, and D. Vivien. 2003. Transforming growth factor-β1 potentiates amyloid-β generation in astrocytes and in transgenic mice. J. Biol. Chem. 278:18408–18418.
  • Liao, Y.-F., B. J. Wang, H. T. Cheng, L. H. Kuo, and M. S. Wolf. 2004. Tumor necrosis factor-α, interleukin-1β, and interferon-γ stimulate γ-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK Pathway. J. Biol. Chem. 279:49523–49532.
  • Lippa, C. F., K. C. Flanders, E. S. Kim, and S. Croul. 1998. TGF-β receptors-I and -II immunoexpression in Alzheimer's disease: a comparison with aging and progressive supranuclear palsy. Neurobiol. Aging 19:527–533.
  • Lund, L. R., A. Riccio, P. A. Andreasen, L. S. Nielsen, P. Kristensen, M. Laiho, O. Saksela, F. Blasi, and K. Dano. 1987. Transforming growth factor-β is a strong and fast acting positive regulator of the level of type-1 plasminogen activator inhibitor mRNA in WI-38 human lung fibroblasts. EMBO J. 6:1281–1286.
  • Luo, J. J., W. Wallace, T. Riccioni, D. K. Ingram, G. S. Roth, and J. W. Kusiak. 1999. Death of PC12 cells and hippocampal neurons induced by adenoviral-mediated FAD human amyloid precursor protein gene expression. J. Neurosci. Res. 55:629–642.
  • Lyman, S. D., L. James, T. Vanden Bos, P. de Vries, K. Brasel, B. Gliniak, L. T. Hollingsworth, K. S. Picha, H. J. McKenna, R. R. Splett, F. A. Fletcher, E. Maraskovsky, D. E. Williams, and M. P. Beckman. 1993. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 75:1157–1167.
  • Martinou, J. C., A. Le Van Thai, A Valette, and M. J. Weber. 1990. Transforming growth factor β1 is a potent survival factor for rat embryo motoneurons in culture. Brain Res. Dev. Brain Res. 52:175–181.
  • Massagué, J., J. Andres, L. Attisano, S. Cheifetz, F. Lopez-Casillas, M. Ohtsuki, and J. L. Wrana. 1992. TGF-β receptors. Mol. Reprod. Dev. 32:99–104.
  • Massagué, J. 1998. TGF-β signal transduction. Annu. Rev. Biochem. 67:753–791.
  • Massagué, J., S. W. Blain, and R. S. Lo. 2000. TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103:295–309.
  • McPhie, D. L., R. Coopersmith, A. Hines-Peralta, Y. Chen, K. J. Ivins, S. P. Manly, M. R. Kozlowski, K. A. Nevé, and R. L. Nevé. 2003. DNA synthesis and neuronal apoptosis caused by familial Alzheimer's disease mutants of the amyloid precursor protein are mediated by the p21 activated kinase PAK3. J. Neurosci. 23:6914–6927.
  • Mizushima, S., and S. Nagata. 1990. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 18:5322.
  • Nevé, R. L., D. L. McPhie, and Y. Chen. 2000. Alzheimer's disease: a dysfunction of the amyloid precursor protein. Brain Res. 886:54–66.
  • Niikura, T., M. Yamada, T. Chiba, S. Aiso, M. Matsuoka, and I. Nishimoto. 2004. Characterization of V642I-AβPP-induced cytotoxicity in primary neurons. J. Neurosci. Res. 77:54–62.
  • Nishimoto, I., T. Okamoto, Y. Matsuura, S. Takahashi, T. Okamoto, Y. Murayama, and E. Ogata. 1993. Alzheimer amyloid protein precursor complexes with brain GTP binding protein Go. Nature 362:75–79.
  • Peress, N. S., and E. Perillo. 1995. Differential expression of TGF-β 1, 2 and 3 isotypes in Alzheimer's disease: a comparative immunohistochemical study with cerebral infarction, aged human and mouse control brains. J. Neuropathol. Exp. Neurol. 54:802–811.
  • Poulson, K. T., A. P. Armanini, R. D. Klein, M. A. Hynes, H. S. Phillips, and A. Rosenthal. 1994. TGF-β2 and TGF-β3 are potent survival factors for midbrain dopaminergic neurons. Neuron 13:1245–1252.
  • Pratt, B. M., and J. M. McPherson. 1997. TGF-β in the central nervous system: potential roles in ischemic injury and neurodegenerative diseases. Cytokine Growth Factor Rev. 8:267–292.
  • Rohn, T. T., K. J. Ivins, B. A. Bahr, C. W. Cotman, and D. H. Cribbs. 2000. A monoclonal antibody to amyloid precursor protein induces neuronal apoptosis. J. Neurochem. 74:2331–2342.
  • Rotzer, D., M. Roth, M. Lutz, D. Lindemann, W. Sebald, and P. Knaus. 2000. Type III TGF-β receptor-independent signalling of TGF-β2 via TβRII-B, an alternatively spliced TGF-β type II receptor. EMBO J. 20:480–490.
  • Santiago-Garcia, J., J. Mas-Oliva, T. L. Innerarity, and R. E. Pitas. 2001. Secreted forms of the amyloid-β precursor protein are ligands for the class A scavenger receptor. J. Biol. Chem. 276:30655–30661.
  • Schuster, N., and K. Krieglstein. 2002. Mechanisms of TGF-β-mediated apoptosis. Cell Tissue Res. 307:1–14.
  • Sudo, H., Y. Hashimoto, T. Niikura, Z. Shao, T. Yasukawa, Y. Ito, M. Yamada, M. Hata, T. Hiraki, M. Kawasumi, K. Kouyama, and I. Nishimoto. 2001. Secreted Aβ does not mediate neurotoxicity by antibody-stimulated amyloid precursor protein. Biochem. Biophys. Res. Commun. 282:548–556.
  • Suzuki, N., T. T. Cheung, X. D. Cai, A. Odaka, L. Otvos, Jr., C. Eckman, T. E. Golde, and S. G. Younkin. 1994. An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 264:1336–1340.
  • ten Dijke, P., and C. S. Hill. 2004. New insights into TGF-β-Smad signalling. Trends Biochem. Sci. 29:265–273.
  • Tomita, T., K. Maruyama, T. C. Saido, H. Kume, K. Shinozaki, S. Tokuhiro, A. Capell, J. Walter, J. Grunberg, C. Haass, T. Iwatsubo, and K. Obata. 1997. The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid β protein ending at the 42nd (or 43rd) residue. Proc. Natl. Acad. Sci. USA 94:2025–2030.
  • Wyss-Coray, T., E. Masliah, M. Mallory, L. McConlogue, K. Johnson-Wood, C. Lin, and L. Mucke. 1997. Amyloidogenic role of cytokine TGF-β1 in transgenic mice and in Alzheimer's disease. Nature 389:603–606.
  • Yamatsuji, T., T. Okamoto, S. Takeda, Y. Murayama, N. Tanaka, and I. Nishimoto. 1996. Expression of V642 APP mutant causes cellular apoptosis as Alzheimer trait-linked phenotype. EMBO J. 15:498–509.
  • Yamatsuji, T., T. Okamoto, S. Takeda, H. Fukumoto, T. Iwatsubo, N. Suzuki, A. Asami-Odaka, S. Ireland, T. Kinane, U. Giambarella, and I. Nishimoto. 1996. G protein-mediated neuronal DNA fragmentation by familial Alzheimer's disease associated V642 mutants of APP. Science 272:1349–1352.
  • Zhao, B., F. J. Chrest, W. E. Horton, Jr., S. S. Sisodia, and J. W. Kusiak. 1997. Expression of mutant amyloid precursor proteins induces apoptosis in PC12 cells. J. Neurosci. Res. 47:253–263.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.