37
Views
103
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Altered Integration of Matrilin-3 into Cartilage Extracellular Matrix in the Absence of Collagen IX

, , , , , , , , & show all
Pages 10465-10478 | Received 17 Aug 2005, Accepted 08 Sep 2005, Published online: 27 Mar 2023

REFERENCES

  • Annunen, S., P. Paassilta, J. Lohiniva, M. Perala, T. Pihlajamaa, J. Karppinen, O. Tervonen, H. Kroger, S. Lahde, H. Vanharanta, L. Ryhanen, H. H. Goring, J. Ott, D. J. Prockop, and L. Ala-Kokko. 1999. An allele of COL9A2 associated with intervertebral disc disease. Science 285:409–412.
  • Blaschke, U. K., E. F. Eikenberry, D. J. Hulmes, H. J. Galla, and P. Bruckner. 2000. Collagen XI nucleates self-assembly and limits lateral growth of cartilage fibrils. J. Biol. Chem. 275:10370–10378.
  • Briggs, M. D., and K. L. Chapman. 2002. Pseudoachondroplasia and multiple epiphyseal dysplasia: mutation review, molecular interactions, and genotype to phenotype correlations. Hum. Mutat. 19:465–478.
  • Briggs, M. D., S. M. Hoffman, L. M. King, A. S. Olsen, H. Mohrenweiser, J. G. Leroy, G. R. Mortier, D. L. Rimoin, R. S. Lachman, E. S. Gaines, J. A. Cekleniak, R. G. Knowlton, and D. H. Cohn. 1995. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat. Genet. 10:330–336.
  • Bruckner, P., M. Mendler, B. Steinmann, S. Huber, and K. H. Winterhalter. 1988. The structure of human collagen type IX and its organization in fetal and infant cartilage fibrils. J. Biol. Chem. 263:16911–16917.
  • Bruckner, P., and D. J. Prockop. 1981. Proteolytic enzymes as probes for the triple-helical conformation of procollagen. Anal. Biochem. 110:360–368.
  • Chapman, K. L., G. R. Mortier, K. Chapman, J. Loughlin, M. E. Grant, and M. D. Briggs. 2001. Mutations in the region encoding the von Willebrand factor A domain of matrilin-3 are associated with multiple epiphyseal dysplasia. Nat. Genet. 28:393–396.
  • Czarny-Ratajczak, M., J. Lohiniva, P. Rogala, K. Kozlowski, M. Perala, L. Carter, T. D. Spector, L. Kolodziej, U. Seppanen, R. Glazar, J. Krolewski, A. Latos-Bielenska, and L. Ala-Kokko. 2001. A mutation in COL9A1 causes multiple epiphyseal dysplasia: further evidence for locus heterogeneity. Am. J. Hum. Genet. 69:969–980.
  • Deak, F., R. Wagener, I. Kiss, and M. Paulsson. 1999. The matrilins: a novel family of oligomeric extracellular matrix proteins. Matrix Biol. 18:55–64.
  • DiCesare, P. E., M. Morgelin, K. Mann, and M. Paulsson. 1994. Cartilage oligomeric matrix protein and thrombospondin 1. Purification from articular cartilage, electron microscopic structure, and chondrocyte binding. Eur. J. Biochem. 223:927–937.
  • Eikenberry, E. F., and P. Bruckner. 1999. Supramolecular structure of cartilage matrix, p. 289–300. In M. J. Seibel, S. P. Robins, and J. P. Bilezikian (ed.), Bone and cartilage metabolism. Academic Press, San Diego, Calif.
  • Eyre, D. R., T. Pietka, M. A. Weis, and J. J. Wu. 2004. Covalent cross-linking of the NC1 domain of collagen type IX to collagen type II in cartilage. J. Biol. Chem. 279:2568–2574.
  • Fassler, R., P. N. Schnegelsberg, J. Dausman, T. Shinya, Y. Muragaki, M. T. McCarthy, B. R. Olsen, and R. Jaenisch. 1994. Mice lacking alpha 1 (IX) collagen develop noninflammatory degenerative joint disease. Proc. Natl. Acad. Sci. USA 91:5070–5074.
  • Hagg, R., P. Bruckner, and E. Hedbom. 1998. Cartilage fibrils of mammals are biochemically heterogeneous: differential distribution of decorin and collagen IX. J. Cell Biol. 142:285–294.
  • Hagg, R., E. Hedbom, U. Mollers, A. Aszodi, R. Fassler, and P. Bruckner. 1997. Absence of the alpha1(IX) chain leads to a functional knock-out of the entire collagen IX protein in mice. J. Biol. Chem. 272:20650–20654.
  • Hankemeier, S., S. Grassel, G. Plenz, H. U. Spiegel, P. Bruckner, and A. Probst. 2001. Alteration of fracture stability influences chondrogenesis, osteogenesis and immigration of macrophages. J. Orthop. Res. 19:531–538.
  • Hansen, U., and P. Bruckner. 2003. Macromolecular specificity of collagen fibrillogenesis: fibrils of collagens I and XI contain a heterotypic alloyed core and a collagen I sheath. J. Biol. Chem. 278:37352–37359.
  • Hascall, V. C., and D. Heinegard. 1974. Aggregation of cartilage proteoglycans. I. The role of hyaluronic acid. J. Biol. Chem. 249:4232–4241.
  • Hauser, N., M. Paulsson, D. Heinegard, and M. Morgelin. 1996. Interaction of cartilage matrix protein with aggrecan. Increased covalent cross-linking with tissue maturation. J. Biol. Chem. 271:32247–32252.
  • Hedbom, E., and D. Heinegard. 1993. Binding of fibromodulin and decorin to separate sites on fibrillar collagens. J. Biol. Chem. 268:27307–27312.
  • Holden, P., R. S. Meadows, K. L. Chapman, M. E. Grant, K. E. Kadler, and M. D. Briggs. 2001. Cartilage oligomeric matrix protein interacts with type IX collagen, and disruptions to these interactions identify a pathogenetic mechanism in a bone dysplasia family. J. Biol. Chem. 276:6046–6055.
  • Horton, W. A., and J. T. Hecht. 2002. Chondrodysplasias: general concepts and diagnostic and management considerations, p. 901–908. In P. M. Royce and B. Steinmann (ed.), Connective tissue and its heritable disorders. Wiley-Liss, New York, N.Y.
  • Hunziker, E. B. 1992. Articular cartilage structure in humans and experimental animals, p. 183–199. In K. E. Kuettner, K. E. Schleyerbach, J. G. Peyron, and V. C. Hascall (ed.), Articular cartilage and osteoarthritis. Raven Press, New York, N.Y.
  • Jackson, G. C., F. S. Barker, E. Jakkula, M. Czarny-Ratajczak, O. Makitie, W. G. Cole, M. J. Wright, S. F. Smithson, M. Suri, P. Rogala, G. R. Mortier, C. Baldock, A. Wallace, R. Elles, L. Ala-Kokko, and M. D. Briggs. 2004. Missense mutations in the beta strands of the single A-domain of matrilin-3 result in multiple epiphyseal dysplasia. J. Med. Genet. 41:52–59.
  • Kassner, A., U. Hansen, N. Miosge, D. P. Reinhardt, T. Aigner, L. Bruckner-Tuderman, P. Bruckner, and S. Grassel. 2003. Discrete integration of collagen XVI into tissue-specific collagen fibrils or beaded microfibrils. Matrix Biol. 22:131–143.
  • Klatt, A. R., D. P. Nitsche, B. Kobbe, M. Macht, M. Paulsson, and R. Wagener. 2001. Molecular structure, processing, and tissue distribution of matrilin-4. J. Biol. Chem. 276:17267–17275.
  • Klatt, A. R., D. P. Nitsche, B. Kobbe, M. Morgelin, M. Paulsson, and R. Wagener. 2000. Molecular structure and tissue distribution of matrilin-3, a filament-forming extracellular matrix protein expressed during skeletal development. J. Biol. Chem. 275:3999–4006.
  • Klatt, A. R., M. Paulsson, and R. Wagener. 2002. Expression of matrilins during maturation of mouse skeletal tissues. Matrix Biol. 21:289–296.
  • Ko, Y., B. Kobbe, C. Nicolae, N. Miosge, M. Paulsson, R. Wagener, and A. Aszodi. 2004. Matrilin-3 is dispensable for mouse skeletal growth and development. Mol. Cell. Biol. 24:1691–1699.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.
  • Li, Y., D. A. Lacerda, M. L. Warman, D. R. Beier, H. Yoshida, Y. Ninomiya, J. T. Oxford., N. P. Morris, K. Andrikopoulos, F. Ramirez, B. B. Wardell, G. D. Lifferth, C. Teuscher, S. R. Woodward, B. A. Taylor, R. E. Seegmiller, and B. R. Olsen. 1995. A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell 80:423–430.
  • Mann, H. H., S. Ozbek, J. Engel, M. Paulsson, and R. Wagener. 2004. Interactions between the cartilage oligomeric matrix protein and matrilins. Implications for matrix assembly and the pathogenesis of chondrodysplasias. J. Biol. Chem. 279:25294–25298.
  • Mendler, M., S. G. Eich-Bender, L. Vaughan, K. H. Winterhalter, and P. Bruckner. 1989. Cartilage contains mixed fibrils of collagen types II, IX, and XI. J. Cell Biol. 108:191–197.
  • Miosge, N., K. Flachsbart, W. Goetz, W. Schultz, H. Kresse, and R. Herken. 1994. Light and electron microscopical immunohistochemical localization of the small proteoglycan core proteins decorin and biglycan in human knee joint cartilage. Histochem. J. 26:939–945.
  • Muller-Glauser, W., B. Humbel, M. Glatt, P. Strauli, K. H. Winterhalter, and P. Bruckner. 1986. On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils. J. Cell Biol. 102:1931–1939.
  • Muragaki, Y., E. C. Mariman, S. E. van Beersum, M. Perala, J. B. van Mourik, M. L. Warman, B. R. Olsen, and B. C. Hamel. 1996. A mutation in the gene encoding the alpha 2 chain of the fibril-associated collagen IX, COL9A2, causes multiple epiphyseal dysplasia (EDM2). Nat. Genet. 12:103–105.
  • Otten, C., R. Wagener, M. Paulsson, and F. Zaucke. 2005. Matrilin-3 mutations that cause chondrodysplasias interfere with protein trafficking while a mutation linked to hand osteoarthritis does not. J. Med. Genet. 42:774–779.
  • Paassilta, P., J. Lohiniva, S. Annunen, J. Bonaventure, M. Le Merrer, L. Pai, and L. Ala-Kokko. 1999. COL9A3: a third locus for multiple epiphyseal dysplasia. Am. J. Hum. Genet. 64:1036–1044.
  • Piecha, D., S. Muratoglu, M. Morgelin, N. Hauser, D. Studer, I. Kiss, M. Paulsson, and F. Deak. 1999. Matrilin-2, a large, oligomeric matrix protein, is expressed by a great variety of cells and forms fibrillar networks. J. Biol. Chem. 274:13353–13361.
  • Pihlajamaa, T., M. Perala, M. M. Vuoristo, M. Nokelainen, M. Bodo, T. Schulthess, E. Vuorio, R. Timpl, J. Engel, and L. Ala-Kokko. 1999. Characterization of recombinant human type IX collagen. Association of alpha chains into homotrimeric and heterotrimeric molecules. J. Biol. Chem. 274:22464–22468.
  • Rosenberg, K., H. Olsson, M. Morgelin, and D. Heinegard. 1998. Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J. Biol. Chem. 273:20397–20403.
  • Shaw, L. M., and B. R. Olsen. 1991. FACIT collagens: diverse molecular bridges in extracellular matrices. Trends Biochem. Sci. 16:191–194.
  • Smyth, N., U. Odenthal, B. Merkl, and M. Paulsson. 2000. Eukaryotic expression and purification of recombinant extracellular matrix proteins carrying the Strep II tag. Methods Mol. Biol. 139:49–57.
  • Svensson, L., A. Aszodi, D. Heinegard, E. B. Hunziker, F. P. Reinholt, R. Fassler, and A. Oldberg. 2002. Cartilage oligomeric matrix protein-deficient mice have normal skeletal development. Mol. Cell. Biol. 22:4366–4371.
  • Szuts, V., U. Mollers, K. Bittner, G. Schurmann, S. Muratoglu, F. Deak, I. Kiss, and P. Bruckner. 1998. Terminal differentiation of chondrocytes is arrested at distinct stages identified by their expression repertoire of marker genes. Matrix Biol. 17:435–448.
  • Thur, J., K. Rosenberg, D. P. Nitsche, T. Pihlajamaa, L. Ala-Kokko, D. Heinegard, M. Paulsson, and P. Maurer. 2001. Mutations in cartilage oligomeric matrix protein causing pseudoachondroplasia and multiple epiphyseal dysplasia affect binding of calcium and collagen I, II, and IX. J. Biol. Chem. 276:6083–6092.
  • Treble, N. J., F. O. Jensen, A. Bankier, J. G. Rogers, and W. G. Cole. 1990. Development of the hip in multiple epiphyseal dysplasia. Natural history and susceptibility to premature osteoarthritis. J. Bone Joint Surg. Br. 72:1061–1064.
  • Vaughan, L., M. Mendler, S. Huber, P. Bruckner, K. H. Winterhalter, M. I. Irwin, and R. Mayne. 1988. D-periodic distribution of collagen type IX along cartilage fibrils. J. Cell Biol. 106:991–997.
  • Wagener, R., H. W. Ehlen, Y. P. Ko, B. Kobbe, H. H. Mann, G. Sengle, and M. Paulsson. 2005. The matrilins—adaptor proteins in the extracellular matrix. FEBS Lett. 579:3323–3329.
  • Wiberg, C., A. R. Klatt, R. Wagener, M. Paulsson, J. F. Bateman, D. Heinegard, and M. Morgelin. 2003. Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan. J. Biol. Chem. 278:37698–37704.
  • Wu, J. J., and D. R. Eyre. 1998. Matrilin-3 forms disulfide-linked oligomers with matrilin-1 in bovine epiphyseal cartilage. J. Biol. Chem. 273:17433–17438.
  • Wu, J. J., P. E. Woods, and D. R. Eyre. 1992. Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding. J. Biol. Chem. 267:23007–23014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.