40
Views
104
CrossRef citations to date
0
Altmetric
Gene Expression

Melanoma Antigen Gene Protein MAGE-11 Regulates Androgen Receptor Function by Modulating the Interdomain Interaction

, &
Pages 1238-1257 | Received 13 Aug 2004, Accepted 15 Nov 2004, Published online: 27 Mar 2023

REFERENCES

  • Balk, S. P. 2002. Androgen receptor as a target in androgen-independent prostate cancer. Urology 60:132–138.
  • Callewaert, L., G. Verrijdt, V. Christiaens, A. Haelens, and F. Claessens. 2003. Dual function of an amino-terminal amphipathic helix in androgen receptor-mediated transactivation through specific and nonspecific response elements. J. Biol. Chem. 278:8212–8218.
  • Chen, C. D., D. S. Welsbie, C. Tran, S. H. Baek, R. Chen, R. Vessella, M. G. Rosenfeld, and C. L. Sawyers. 2004. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10:33–39.
  • Counts, J. L., and J. I. Goodman. 1995. Alterations in DNA methylation may play a variety of roles in carcinogenesis. Cell 83:13–15.
  • De Plaen, E., K. Arden, C. Traversari, J. J. Gaforio, J. P. Szikora, C. De Smet, F. Brasseur, P. van der Bruggen, B. Lethé, C. Lurquin, R. Brasseur, P. Chomez, O. De Backer, W. Cavenee, and T. Boon. 1994. Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics 40:360–369.
  • De Smet, C., O. De Backer, I. Faraoni, C. Lurquin, F. Brasseur, and T. Boon. 1996. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc. Natl. Acad. Sci. USA 93:7149–7153.
  • Fujimoto, N., S. Yeh, H. Y. Kang, S. Inui, H. C. Chang, A. Mizokami, and C. Chang. 1999. Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J. Biol. Chem. 274:8316–8321.
  • Gelmann, E. P. 2002. Molecular biology of the androgen receptor. J. Clin. Oncol. 20:3001–3015.
  • Gregory, C. W., X. Fei, L. A. Ponguta, B. He, H. M. Bill, F. S. French, and E. M. Wilson. 2004. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J. Biol. Chem. 279:7119–7130.
  • Gregory, C. W., B. He, R. T. Johnson, O. H. Ford, J. L. Mohler, F. S. French, and E. M. Wilson. 2001. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res. 61:4315–4319.
  • Gregory, C. W., R. T. Johnson, J. L. Mohler, F. S. French, and E. M. Wilson. 2001. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res. 61:2892–2898.
  • Grossmann, M. E., H. Huang, and D. J. Tindall. 2001. Androgen receptor signaling in androgen-refractory prostate cancer. J. Natl. Cancer Inst. 93:1687–1697.
  • He, B., S. Bai, A. T. Hnat, R. I. Kalman, J. T. Minges, C. Patterson, and E. M. Wilson. 2004. An androgen receptor NH2-terminal conserved motif interacts with carboxyl terminus of Hsp70-interacting protein CHIP. J. Biol. Chem. 279:30643–30653.
  • He, B., N. T. Bowen, J. T. Minges, and E. M. Wilson. 2001. Androgen-induced NH2- and COOH-terminal interaction inhibits p160 coactivator recruitment by activation function 2. J. Biol. Chem. 276:42293–42301.
  • He, B., R. T. Gampe, A. J. Kole, A. T. Hnat, T. B. Stanley, G. An, E. L. Stewart, R. I. Kalman, J. T. Minges, and E. M. Wilson. 2004. Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol. Cell 16:425–438.
  • He, B., J. A. Kemppainen, J. J. Voegel, H. Gronemeyer, and E. M. Wilson. 1999. Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH2-terminal domain. J. Biol. Chem. 274:37219–37225.
  • He, B., J. A. Kemppainen, and E. M. Wilson. 2000. FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J. Biol. Chem. 275:22986–22994.
  • He, B., L. W. Lee, J. T. Minges, and E. M. Wilson. 2002. Dependence of selective gene activation on the androgen receptor NH2- and COOH-terminal interaction. J. Biol. Chem. 277:25631–25639.
  • He, B., J. T. Minges, L. W. Lee, and E. M. Wilson. 2002. The FXXLF motif mediates androgen receptor-specific interactions with coregulators. J. Biol. Chem. 277:10226–10235.
  • He, B., and E. M. Wilson. 2003. Electrostatic modulation in steroid receptor recruitment of LXXLL and FXXLF motifs. Mol. Cell. Biol. 23:2135–2150.
  • Huang, W., Y. Shostak, P. Tarr, C. Sawyers, and M. Carey. 1999. Cooperative assembly of androgen receptor into a nucleoprotein complex that regulates the prostate-specific antigen enhancer. J. Biol. Chem. 274:25756–25768.
  • Hur, E., S. J. Pfaff, E. S. Payne, H. Gron, B. M. Buehrer, and R. J. Fletterick. 2004. Recognition and accommodation at the androgen receptor coactivator binding interface. PLoS Biol. 2:e274.
  • Irvine, R. A., and G. A. Coetzee. 1999. Additional upstream coding sequences of MAGE-11. Immunogenetics 49:585.
  • Jurk, M., E. Kremmer, U. Schwarz, R. Forster, and E. L. Winnacker. 1998. MAGE-11 protein is highly conserved in higher organisms and located predominantly in the nucleus. Int. J. Cancer 75:762–766.
  • Kang, H. Y., S. Yeh, N. Fujimoto, and C. Chang. 1999. Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor. J. Biol. Chem. 274:8570–8576.
  • Kemppainen, J. A., M. V. Lane, M. Sar, and E. M. Wilson. 1992. Androgen receptor phosphorylation, turnover, nuclear transport, and transcriptional activation. Specificity for steroids and antihormones.. J. Biol. Chem. 267:968–974.
  • Kemppainen, J. A., E. Langley, C. I. Wong, K. Bobseine, W. R. Kelce, and E. M. Wilson. 1999. Distinguishing androgen receptor agonists and antagonists: distinct mechanisms of activation by medroxyprogesterone acetate and dihydrotestosterone. Mol. Endocrinol. 13:440–454.
  • Koivisto, P., J. Kononen, C. Palmberg, T. Tammela, E. Hyytinen, J. Isola, J. Trapman, K. Cleutjens, A. Noordzij, T. Visakorpi, and O. P. Kallioniemi. 1997. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 57:314–319.
  • Lalli, E., and P. Sassone-Corsi. 2003. DAX-1, an unusual orphan receptor at the crossroads of steroidogenic function and sexual differentiation. Mol. Endocrinol. 17:1445–1453.
  • Langley, E., Z. X. Zhou, and E. M. Wilson. 1995. Evidence for an anti-parallel orientation of the ligand-activated human androgen receptor dimer. J. Biol. Chem. 270:29983–29990.
  • Lubahn, D. B., D. R. Joseph, M. Sar, J. Tan, H. N. Higgs, R. E. Larson, F. S. French, and E. M. Wilson. 1988. The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis and gene expression in prostate. Mol. Endocrinol. 2:1265–1275.
  • Lurquin, C., C. De Smet, F. Brasseur, F. Muscatelli, V. Martelange, E. De Plaen, R. Brasseur, A. P. Monaco, and T. Boon. 1997. Two members of the human MAGEB gene family located in Xp21.3 are expressed in tumors of various histological origins. Genomics 46:397–408.
  • Mohler, J. L., C. W. Gregory, O. H. Ford, D. Kim, C. M. Weaver, P. Petrusz, E. M. Wilson, and F. S. French. 2004. The androgen axis in recurrent prostate cancer. Clin. Cancer Res. 10:440–448.
  • Muscatelli, F., T. M. Strom, A. P. Walker, E. Zanaria, D. Recan, A. Meindl, B. Bardoni, S. Guioli, G. Zehetner, W. Rabl, H. P. Schwarz, J. C. Kaplan, G. Camerino, T. Meitinger, and A. P. Monaco. 1994. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372:672–676.
  • Muscatelli, F., A. P. Walker, E. De Plaen, A. N. Stafford, and A. P. Monaco. 1995. Isolation and characterization of a MAGE gene family in the Xp21.3 region. Proc. Natl. Acad. Sci. USA 92:4987–4991.
  • Rao, M. A., H. Cheng, A. N. Quayle, H. Nishitani, C. C. Nelson, and P. S. Rennie. 2002. RanBPM, a nuclear protein that interacts with and regulates transcriptional activity of androgen receptor and glucocorticoid receptor. J. Biol. Chem. 277:48020–48027.
  • Razeto, A., V. Ramakrishnan, C. M. Litterst, K. Giller, C. Griesinger, T. Carlomagno, N. Lakomek, T. Heimburg, M. Lodrini, E. Pfitzner, and S. Becker. 2004. Structure of the NCoA-1/SRC-1 PAS-B domain bound to the LXXLL motif of the STAT6 transactivation domain. J. Mol. Biol. 336:319–329.
  • Rivera, O. J., C. S. Song, V. E. Centonze, J. D. Lechleiter, B. Chatterjee, and A. K. Roy. 2003. Role of the promyelocytic leukemia body in the dynamic interaction between the androgen receptor and steroid receptor coactivator-1 in living cells. Mol. Endocrinol. 17:128–140.
  • Rogner, U. C., K. Wilke, E. Steck, B. Korn, and A. Poustka. 1995. The melanoma antigen gene (MAGE) family is clustered in the chromosomal band Xq28. Genomics 29:725–731.
  • Sadis, S., C. Atienza, and D. Finley. 1995. Synthetic signals for ubiquitin-dependent proteolysis. Mol. Cell. Biol. 15:4086–4094.
  • Shang, Y., M. Myers, and M. Brown. 2002. Formation of the androgen receptor transcription complex. Mol. Cell 9:601–610.
  • Simental, J. A., M. Sar, M. V. Lane, F. S. French, and E. M. Wilson. 1991. Transcriptional activation and nuclear targeting signals of the human androgen receptor. J. Biol. Chem. 266:510–518.
  • Steketee, K., C. A. Berrevoets, H. J. Dubbink, P. Doesburg, R. Hersmus, A. O. Brinkmann, and J. Trapman. 2002. Amino acids 3-13 and amino acids in and flanking the 23FxxLF27 motif modulate the interaction between the N-terminal and ligand-binding domain of the androgen receptor. Eur. J. Biochem. 269:5780–5791.
  • Tan, J. A., S. H. Hall, P. Petrusz, and F. S. French. 2000. Thyroid receptor activator molecule, TRAM-1, is an androgen receptor coactivator. Endocrinology 141:3440–3450.
  • Tork, S., I. Hatin, J. P. Rousset, and C. Fabret. 2004. The major 5′ determinant in stop codon read-through involves two adjacent adenines. Nucleic Acids Res. 32:415–421.
  • Visakorpi, T., E. Hyytinen, P. Koivisto, M. Tanner, R. Keinanen, C. Palmberg, A. Palotie, T. Tammela, J. Isola, and O. P. Kallioniemi. 1995. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat. Genet. 9:401–406.
  • Voegel, J. J., M. J. Heine, M. Tini, V. Vivat, P. Chambon, and H. Gronemeyer. 1998. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 17:507–519.
  • Yang, L., J. Guerrero, H. Hong, D. B. DeFranco, and M. R. Stallcup. 2000. Interaction of the tau2 transcriptional activation domain of glucocorticoid receptor with a novel steroid receptor coactivator, Hic-5, which localizes to both focal adhesions and the nuclear matrix. Mol. Biol. Cell 11:2007–2018.
  • Yeh, S., and C. Chang. 1996. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc. Natl. Acad. Sci. USA 93:5517–5521.
  • Zhou, Z. X., B. He, S. H. Hall, E. M. Wilson, and F. S. French. 2002. Domain interactions between coregulator ARA(70) and the androgen receptor (AR). Mol. Endocrinol. 16:287–300.
  • Zhou, Z. X., M. V. Lane, J. A. Kemppainen, F. S. French, and E. M. Wilson. 1995. Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol. Endocrinol. 9:208–218.
  • Zhou, Z. X., M. Sar, J. A. Simental, M. V. Lane, and E. M. Wilson. 1994. A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences. J. Biol. Chem. 269:13115–13123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.