13
Views
47
CrossRef citations to date
0
Altmetric
Signal Transduction

Transforming Growth Factor β Facilitates β-TrCP-Mediated Degradation of Cdc25A in a Smad3-Dependent Manner

, , , , , , , , , & show all
Pages 3338-3347 | Received 26 Aug 2004, Accepted 03 Jan 2005, Published online: 27 Mar 2023

REFERENCES

  • Bartek, J., and J. Lukas. 2003. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–429.
  • Bernardi, R., D. A. Liebermann, and B. Hoffman. 2000. Cdc25A stability is controlled by the ubiquitin-proteasome pathway during cell cycle progression and terminal differentiation. Oncogene 19:2447–2454.
  • Bhowmick, N. A., M. Ghiassi, M. Aakre, K. Brown, V. Singh, and H. L. Moses. 2003. TGF-beta-induced RhoA and p160ROCK activation is involved in the inhibition of Cdc25A with resultant cell-cycle arrest. Proc. Natl. Acad. Sci. USA 100:15548–15553.
  • Blomberg, I., and I. Hoffmann. 1999. Ectopic expression of Cdc25A accelerates the G1/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol. Cell. Biol. 19:6183–6194.
  • Broggini, M., G. Buraggi, A. Brenna, L. Riva, A. M. Codegoni, V. Torri, A. A. Lissoni, C. Mangioni, and M. D'Incalci. 2000. Cell cycle-related phosphatases CDC25A and B expression correlates with survival in ovarian cancer patients. Anticancer Res. 20:4835–4840.
  • Busino, L., M. Donzelli, M. Chiesa, D. Guardavaccaro, D. Ganoth, N. V. Dorrello, A. Hershko, M. Pagano, and G. F. Draetta. 2003. Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 426:87–91.
  • Cangi, M. G., B. Cukor, P. Soung, S. Signoretti, G. Moreira, Jr., M. Ranashinge, B. Cady, M. Pagano, and M. Loda. 2000. Role of the Cdc25A phosphatase in human breast cancer. J. Clin. Investig. 106:753–761.
  • Chen, M. S., C. E. Ryan, and H. Piwnica-Worms. 2003. Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol. Cell. Biol. 23:7488–7497.
  • Chen, S. J., W. Yuan, Y. Mori, A. Levenson, M. Trojanowska, and J. Varga. 1999. Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad 3. J. Investig. Dermatol. 112:49–57.
  • Datto, M. B., J. P. Frederick, L. Pan, A. J. Borton, Y. Zhuang, and X. F. Wang. 1999. Targeted disruption of Smad3 reveals an essential role in transforming growth factor β-mediated signal transduction. Mol. Cell. Biol. 19:2495–2504.
  • Derynck, R., and Y. E. Zhang. 2003. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584.
  • Dixon, D., T. Moyana, and M. J. King. 1998. Elevated expression of the cdc25A protein phosphatase in colon cancer. Exp. Cell Res. 240:236–243.
  • Donzelli, M., L. Busino, M. Chiesa, D. Ganoth, A. Hershko, and G. F. Draetta. 2004. Hierarchical order of phosphorylation events commits Cdc25A to βTrCP-dependent degradation. Cell Cycle 3:469–471.
  • Donzelli, M., and G. F. Draetta. 2003. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 4:671–677.
  • Donzelli, M., M. Squatrito, D. Ganoth, A. Hershko, M. Pagano, and G. F. Draetta. 2002. Dual mode of degradation of Cdc25 A phosphatase. EMBO J. 21:4875–4884.
  • Draetta, G., and J. Eckstein. 1997. Cdc25 protein phosphatases in cell proliferation. Biochim. Biophys. Acta 1332:M53–M63.
  • Foster, J. S., D. C. Henley, A. Bukovsky, P. Seth, and J. Wimalasena. 2001. Multifaceted regulation of cell cycle progression by estrogen: regulation of Cdk inhibitors and Cdc25A independent of cyclin D1-Cdk4 function. Mol. Cell. Biol. 21:794–810.
  • Fuhrmann, G., C. Leisser, G. Rosenberger, M. Grusch, S. Huettenbrenner, T. Halama, I. Mosberger, S. Sasgary, C. Cerni, and G. Krupitza. 2001. Cdc25A phosphatase suppresses apoptosis induced by serum deprivation. Oncogene 20:4542–4553.
  • Fukuchi, M., T. Imamura, T. Chiba, T. Ebisawa, M. Kawabata, K. Tanaka, and K. Miyazono. 2001. Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins. Mol. Biol. Cell 12:1431–1443.
  • Galaktionov, K., and D. Beach. 1991. Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67:1181–1194.
  • Galaktionov, K., A. K. Lee, J. Eckstein, G. Draetta, J. Meckler, M. Loda, and D. Beach. 1995. CDC25 phosphatases as potential human oncogenes. Science 269:1575–1577.
  • Gasparotto, D., R. Maestro, S. Piccinin, T. Vukosavljevic, L. Barzan, S. Sulfaro, and M. Boiocchi. 1997. Overexpression of CDC25A and CDC25B in head and neck cancers. Cancer Res. 57:2366–2368.
  • Guardavaccaro, D., Y. Kudo, J. Boulaire, M. Barchi, L. Busino, M. Donzelli, F. Margottin-Goguet, P. K. Jackson, L. Yamasaki, and M. Pagano. 2003. Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev. Cell 4:799–812.
  • Han, S. U., H. T. Kim, D. H. Seong, Y. S. Kim, Y. S. Park, Y. J. Bang, H. K. Yang, and S. J. Kim. 2004. Loss of the Smad3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene 23:1333–1341.
  • Hassepass, I., R. Voit, and I. Hoffmann. 2003. Phosphorylation at serine 75 is required for UV-mediated degradation of human Cdc25A phosphatase at the S-phase checkpoint. J. Biol. Chem. 278:29824–29829.
  • Heldin, C. H., K. Miyazono, and P. ten Dijke. 1997. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471.
  • Hsu, J. Y., J. D. Reimann, C. S. Sorensen, J. Lukas, and P. K. Jackson. 2002. E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nat. Cell Biol. 4:358–366.
  • Hu, X., and K. S. Zuckerman. 2001. Transforming growth factor: signal transduction pathways, cell cycle mediation, and effects on hematopoiesis. J. Hematother. Stem Cell Res. 10:67–74.
  • Iavarone, A., and J. Massague. 1997. Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15. Nature 387:417–422.
  • Iavarone, A., and J. Massague. 1999. E2F and histone deacetylase mediate transforming growth factor β repression of cdc25A during keratinocyte cell cycle arrest. Mol. Cell. Biol. 19:916–922.
  • Ito, Y., H. Yoshida, F. Matsuzuka, N. Matsuura, Y. Nakamura, H. Nakamine, K. Kakudo, K. Kuma, and A. Miyauchi. 2004. Cdc25A and cdc25B expression in malignant lymphoma of the thyroid: correlation with histological subtypes and cell proliferation. Int. J. Mol. Med. 13:431–435.
  • Jin, J., T. Shirogane, L. Xu, G. Nalepa, J. Qin, S. J. Elledge, and J. W. Harper. 2003. SCFβ-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev. 17:3062–3074.
  • Jinno, S., K. Suto, A. Nagata, M. Igarashi, Y. Kanaoka, H. Nojima, and H. Okayama. 1994. Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J. 13:1549–1556.
  • Kim, S. J., and J. Letterio. 2003. Transforming growth factor-beta signaling in normal and malignant hematopoiesis. Leukemia 17:1731–1737.
  • Leisser, C., G. Fuhrmann, G. Rosenberger, M. Grusch, T. Halama, S. Sasgary, C. Cerni, and G. Krupitza. 2001. Cdc25a mediates survival by activating akt kinase. Sci. World J. 1:94.
  • Leisser, C., G. Rosenberger, S. Maier, G. Fuhrmann, M. Grusch, S. Strasser, S. Huettenbrenner, S. Fassl, D. Polgar, S. Krieger, C. Cerni, R. Hofer-Warbinek, R. DeMartin, and G. Krupitza. 2004. Subcellular localisation of Cdc25A determines cell fate. Cell Death Differ. 11:80–89.
  • Liu, X., A. E. Elia, S. F. Law, E. A. Golemis, J. Farley, and T. Wang. 2000. A novel ability of Smad3 to regulate proteasomal degradation of a Cas family member HEF1. EMBO J. 19:6759–6769.
  • Loffler, H., R. G. Syljuasen, J. Bartkova, J. Worm, J. Lukas, and J. Bartek. 2003. Distinct modes of deregulation of the proto-oncogenic Cdc25A phosphatase in human breast cancer cell lines. Oncogene 22:8063–8071.
  • Matsuura, I., N. G. Denissova, G. Wang, D. He, J. Long, and F. Liu. 2004. Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 430:226–231.
  • Nilsson, I., and I. Hoffmann. 2000. Cell cycle regulation by the Cdc25 phosphatase family. Prog. Cell Cycle Res. 4:107–114.
  • Nishioka, K., Y. Doki, H. Shiozaki, H. Yamamoto, S. Tamura, T. Yasuda, Y. Fujiwara, M. Yano, H. Miyata, K. Kishi, H. Nakagawa, A. Shamma, and M. Monden. 2001. Clinical significance of CDC25A and CDC25B expression in squamous cell carcinomas of the oesophagus. Br. J. Cancer 85:412–421.
  • Nourry, C., L. Maksumova, M. Pang, X. Liu, and T. Wang. 2004. Direct interaction between Smad3, APC10, CDH1 and HEF1 in proteasomal degradation of HEF1. BMC Cell Biol. 5:20.
  • Pagano, M., and R. Benmaamar. 2003. When protein destruction runs amok, malignancy is on the loose. Cancer Cell 4:251–256.
  • Reimann, J. D., E. Freed, J. Y. Hsu, E. R. Kramer, J. M. Peters, and P. K. Jackson. 2001. Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105:645–655.
  • Sandhu, C., J. Donovan, N. Bhattacharya, M. Stampfer, P. Worland, and J. Slingerland. 2000. Reduction of Cdc25A contributes to cyclin E1-Cdk2 inhibition at senescence in human mammary epithelial cells. Oncogene 19:5314–5323.
  • Shi, Y., and J. Massague. 2003. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700.
  • Shimuta, K., N. Nakajo, K. Uto, Y. Hayano, K. Okazaki, and N. Sagata. 2002. Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition. EMBO J. 21:3694–3703.
  • Stroschein, S. L., S. Bonni, J. L. Wrana, and K. Luo. 2001. Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Genes Dev. 15:2822–2836.
  • Tsutsui, T., B. Hesabi, D. S. Moons, P. P. Pandolfi, K. S. Hansel, A. Koff, and H. Kiyokawa. 1999. Targeted disruption of CDK4 delays cell cycle entry with enhanced p27Kip1 activity. Mol. Cell. Biol. 19:7011–7019.
  • Vigo, E., H. Muller, E. Prosperini, G. Hateboer, P. Cartwright, M. C. Moroni, and K. Helin. 1999. CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol. Cell. Biol. 19:6379–6395.
  • Wan, M., Y. Tang, E. M. Tytler, C. Lu, B. Jin, S. M. Vickers, L. Yang, X. Shi, and X. Cao. 2004. Smad4 protein stability is regulated by ubiquitin ligase SCF beta-TrCP1. J. Biol. Chem. 279:14484–14487.
  • Wolfraim, L. A., T. M. Fernandez, M. Mamura, W. L. Fuller, R. Kumar, D. E. Cole, S. Byfield, A. Felici, K. C. Flanders, T. M. Walz, A. B. Roberts, P. D. Aplan, F. M. Balis, and J. J. Letterio. 2004. Loss of Smad3 in acute T-cell lymphoblastic leukemia. N. Engl. J. Med. 351:552–559.
  • Wu, W., Y. H. Fan, B. L. Kemp, G. Walsh, and L. Mao. 1998. Overexpression of cdc25A and cdc25B is frequent in primary non-small cell lung cancer but is not associated with overexpression of c-myc. Cancer Res. 58:4082–4085.
  • Yang, X., J. J. Letterio, R. J. Lechleider, L. Chen, R. Hayman, H. Gu, A. B. Roberts, and C. Deng. 1999. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J. 18:1280–1291.
  • Zhao, H., J. L. Watkins, and H. Piwnica-Worms. 2002. Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc. Natl. Acad. Sci. USA 99:14795–14800.
  • Zhu, Y., J. A. Richardson, L. F. Parada, and J. M. Graff. 1998. Smad3 mutant mice develop metastatic colorectal cancer. Cell 94:703–714.
  • Zou, X., D. Ray, A. Aziyu, K. Christov, A. D. Boiko, A. V. Gudkov, and H. Kiyokawa. 2002. Cdk4 disruption renders primary mouse cells resistant to oncogenic transformation, leading to Arf/p53-independent senescence. Genes Dev. 16:2923–2934.
  • Zou, X., T. Tsutsui, D. Ray, J. F. Blomquist, H. Ichijo, D. S. Ucker, and H. Kiyokawa. 2001. The cell cycle-regulatory CDC25A phosphatase inhibits apoptosis signal-regulating kinase 1. Mol. Cell. Biol. 21:4818–4828.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.