58
Views
88
CrossRef citations to date
0
Altmetric
Article

Proteomic Analysis of Mitochondrial Protein Turnover: Identification of Novel Substrate Proteins of the Matrix Protease Pim1

, , , &
Pages 762-776 | Received 30 Jun 2005, Accepted 04 Nov 2005, Published online: 27 Mar 2023

REFERENCES

  • Augustin, S., M. Nolden, S. Müller, O. Hardt, I. Arnold, and T. Langer. 2005. Characterization of peptides released from mitochondria: evidence for constant proteolysis and peptide efflux. J. Biol. Chem. 280:2691–2699.
  • Bateman, J. M., M. Iacovino, P. S. Perlman, and R. A. Butow. 2002. Mitochondrial DNA instability mutants of the bifunctional protein Ilv5p have altered organization in mitochondria and are targeted for degradation by Hsp78 and the Pim1p protease. J. Biol. Chem. 277:47946–47953.
  • Beinert, H., R. H. Holm, and E. Munck. 1997. Iron-sulfur clusters: nature's modular, multipurpose structures. Science 277:653–659.
  • Bota, D. A., and K. J. Davies. 2002. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat. Cell Biol. 4:674–680.
  • Catrein, I., R. Herrmann, A. Bosserhoff, and T. Ruppert. 2005. Experimental proof for a signal peptidase I like activity in Mycoplasma pneumoniae, but absence of a gene encoding a conserved bacterial type I SPase. FEBS J. 272:2892–2900.
  • Davies, K. J. 1993. Protein modification by oxidants and the role of proteolytic enzymes. Biochem. Soc. Trans. 21:346–353.
  • Dobson, C. M. 2003. Protein folding and misfolding. Nature 426:884–890.
  • Dreger, M. 2003. Proteome analysis at the level of subcellular structures. Eur. J. Biochem. 270:589–599.
  • Dutkiewicz, R., B. Schilke, H. Knieszner, W. Walter, E. A. Craig, and J. Marszalek. 2003. Ssq1, a mitochondrial Hsp70 involved in iron-sulfur (Fe/S) center biogenesis. Similarities to and differences from its bacterial counterpart. J. Biol. Chem. 278:29719–29727.
  • Esser, C., S. Alberti, and J. Höhfeld. 2004. Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochim. Biophys. Acta 1695:171–188.
  • Goldberg, A. L. 2003. Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899.
  • Goldberg, A. L. 1992. The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur. J. Biochem. 203:9–23.
  • Goldberg, A. L., R. P. Moerschell, C. H. Chung, and M. R. Maurizi. 1994. ATP-dependent protease La (lon) from Escherichia coli. Methods Enzymol. 244:350–375.
  • Herman, C., S. Prakash, C. Z. Lu, A. Matouschek, and C. A. Gross. 2003. Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol. Cell 11:659–669.
  • Kleizen, B., and I. Braakman. 2004. Protein folding and quality control in the endoplasmic reticulum. Curr. Opin. Cell Biol. 16:343–349.
  • Kostova, Z., and D. H. Wolf. 2003. For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J. 22:2309–2317.
  • Kumar, A., S. Agarwal, J. A. Heyman, S. Matson, M. Heidtman, S. Piccirillo, L. Umansky, A. Drawid, R. Jansen, Y. Liu, K. H. Cheung, P. Miller, M. Gerstein, G. S. Roeder, and M. Snyder. 2002. Subcellular localization of the yeast proteome. Genes Dev. 16:707–719.
  • Langer, T. 2000. AAA proteases: cellular machines for degrading membrane proteins. Trends Biochem. Sci. 25:247–251.
  • Langer, T., and W. Neupert. 1996. Regulated protein degradation in mitochondria. Experientia 52:1069–1076.
  • Lill, R., and U. Mühlenhoff. 2005. Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem. Sci. 30:133–141.
  • Mogk, A., T. Tomoyasu, P. Goloubinoff, S. Rüdiger, D. Roder, H. Langen, and B. Bukau. 1999. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18:6934–6949.
  • Mootha, V. K., J. Bunkenborg, J. V. Olsen, M. Hjerrild, J. R. Wisniewski, E. Stahl, M. S. Bolouri, H. N. Ray, S. Sihag, M. Kamal, N. Patterson, E. S. Lander, and M. Mann. 2003. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115:629–640.
  • Neuwald, A. F., L. Aravind, J. L. Spouge, and E. V. Koonin. 1999. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9:27–43.
  • Ohlmeier, S., A. J. Kastaniotis, J. K. Hiltunen, and U. Bergmann. 2004. The yeast mitochondrial proteome, a study of fermentative and respiratory growth. J. Biol. Chem. 279:3956–3979.
  • Pickart, C. M., and R. E. Cohen. 2004. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol. 5:177–187.
  • Prokisch, H., C. Scharfe, D. G. Camp, W. Xiao, L. David, C. Andreoli, M. E. Monroe, R. J. Moore, M. A. Gritsenko, C. Kozany, K. K. Hixson, H. M. Mottaz, H. Zischka, M. Ueffing, Z. S. Herman, R. W. Davis, T. Meitinger, P. J. Oefner, R. D. Smith, and L. M. Steinmetz. 2004. Integrative analysis of the mitochondrial proteome in yeast. PLoS Biol. 2:795–804.
  • Rep, M., and L. A. Grivell. 1996. The role of protein degradation in mitochondrial function and biogenesis. Curr. Genet. 30:367–380.
  • Rojo, E. E., B. Guiard, W. Neupert, and R. A. Stuart. 1998. Sorting of D-lactate dehydrogenase to the inner membrane of mitochondria. Analysis of topogenic signal and energetic requirements. J. Biol. Chem. 273:8040–8047.
  • Röttgers, K., N. Zufall, B. Guiard, and W. Voos. 2002. The ClpB homolog Hsp78 is required for the efficient degradation of proteins in the mitochondrial matrix. J. Biol. Chem. 277:45829–45837.
  • Ryan, M. T., W. Voos, and N. Pfanner. 2001. Assaying protein import into mitochondria. Methods Cell Biol. 65:189–215.
  • Savel'ev, A. S., I. E. Kovaleva, L. A. Novikova, L. V. Isaeva, and V. N. Luzikov. 1999. Can foreign proteins imported into yeast mitochondria interfere with PIM1p protease and/or chaperone function? Arch. Biochem. Biophys. 363:373–376.
  • Savel'ev, A. S., L. A. Novikova, I. E. Kovaleva, V. N. Luzikov, W. Neupert, and T. Langer. 1998. ATP-dependent proteolysis in mitochondria. m-AAA protease and PIM1 protease exert overlapping substrate specificities and cooperate with the mtHsp70 system. J. Biol. Chem. 273:20596–20602.
  • Schapira, A. H. 1999. Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia. Biochim. Biophys. Acta 1410:159–170.
  • Schilke, B., C. Voisine, H. Beinert, and E. Craig. 1999. Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 96:10206–10211.
  • Sherman, M., and A. L. Goldberg. 1992. Involvement of the chaperonin DnaK in the rapid degradation of a mutant protein in Escherichia coli. EMBO J. 11:71–77.
  • Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Biochem. 68:850–858.
  • Sickmann, A., J. Reinders, Y. Wagner, C. Joppich, R. Zahedi, H. E. Meyer, B. Schönfisch, I. Perschil, A. Chacinska, B. Guiard, P. Rehling, N. Pfanner, and C. Meisinger. 2003. The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl. Acad. Sci. USA 100:13207–13212.
  • Stahlberg, H., E. Kutejova, K. Suda, B. Wolpensinger, A. Lustig, G. Schatz, A. Engel, and C. K. Suzuki. 1999. Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits. Proc. Natl. Acad. Sci. USA 96:6787–6790.
  • Suzuki, C. K., M. Rep, J. M. van Dijl, K. Suda, L. A. Grivell, and G. Schatz. 1997. ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem. Sci. 22:118–123.
  • Suzuki, C. K., K. Suda, N. Wang, and G. Schatz. 1994. Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science 264:273–276.
  • Taylor, S. W., E. Fahy, B. Zhang, G. M. Glenn, D. E. Warnock, S. Wiley, A. N. Murphy, S. P. Gaucher, R. A. Capaldi, B. W. Gibson, and S. S. Ghosh. 2003. Characterization of the human heart mitochondrial proteome. Nat. Biotechnol. 21:281–286.
  • Tomoyasu, T., T. Yuki, S. Morimura, H. Mori, K. Yamanaka, H. Niki, S. Hiraga, and T. Ogura. 1993. The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. J. Bacteriol. 175:1344–1351.
  • Turner, C., and A. H. Schapira. 2001. Mitochondrial dysfunction in neurodegenerative disorders and ageing. Adv. Exp. Med. Biol. 487:229–251.
  • van Dijl, J. M., E. Kutejova, K. Suda, D. Perecko, G. Schatz, and C. K. Suzuki. 1998. The ATPase and protease domains of yeast mitochondrial Lon: roles in proteolysis and respiration-dependent growth. Proc. Natl. Acad. Sci. USA 95:10584–10589.
  • Van Dyck, L., and T. Langer. 1999. ATP-dependent proteases controlling mitochondrial function in the yeast Saccharomyces cerevisiae. Cell. Mol. Life Sci. 56:825–842.
  • Van Dyck, L., D. A. Pearce, and F. Sherman. 1994. PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 269:238–242.
  • Wagner, I., H. Arlt, L. van Dyck, T. Langer, and W. Neupert. 1994. Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J. 13:5135–5145.
  • Wallace, D. C. 1999. Mitochondrial diseases in man and mouse. Science 283:1482–1488.
  • Wang, N., S. Gottesman, M. C. Willingham, M. M. Gottesman, and M. R. Maurizi. 1993. A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc. Natl. Acad. Sci. USA 90:11247–11251.
  • Wickner, S., M. R. Maurizi, and S. Gottesman. 1999. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286:1888–1893.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.