180
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An Important Role for RPRD1B in the Heat Shock Response

, , , , & ORCID Icon
Article: e00173-22 | Received 04 May 2022, Accepted 26 Aug 2022, Published online: 24 Feb 2023

REFERENCES

  • Lindquist S. 1986. The heat-shock response. Annu Rev Biochem 55:1151–1191. https://doi.org/10.1146/annurev.bi.55.070186.005443.
  • Morimoto RI. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796. https://doi.org/10.1101/gad.12.24.3788.
  • Li J, Labbadia J, Morimoto RI. 2017. Rethinking HSF1 in stress, development, and organismal health. Trends Cell Biol 27:895–905. https://doi.org/10.1016/j.tcb.2017.08.002.
  • Hartl FU, Bracher A, Hayer-Hartl M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324–332. https://doi.org/10.1038/nature10317.
  • Gomez-Pastor R, Burchfiel ET, Thiele DJ. 2018. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol 19:4–19. https://doi.org/10.1038/nrm.2017.73.
  • Dong B, Jaeger AM, Thiele DJ. 2019. Inhibiting heat shock factor 1 in cancer: a unique therapeutic opportunity. Trends Pharmacol Sci 40:986–1005. https://doi.org/10.1016/j.tips.2019.10.008.
  • Prince TL, Lang BJ, Guerrero-Gimenez ME, Fernandez-Munoz JM, Ackerman A, Calderwood SK. 2020. HSF1: primary factor in molecular chaperone expression and a major contributor to cancer morbidity. Cells 9:1046. https://doi.org/10.3390/cells9041046.
  • San Gil R, Ooi L, Yerbury JJ, Ecroyd H. 2017. The heat shock response in neurons and astroglia and its role in neurodegenerative diseases. Mol Neurodegener 12:65. https://doi.org/10.1186/s13024-017-0208-6.
  • Kmiecik SW, Mayer MP. 2022. Molecular mechanisms of heat shock factor 1 regulation. Trends Biochem Sci 47:218–234. https://doi.org/10.1016/j.tibs.2021.10.004.
  • Vihervaara A, Duarte FM, Lis JT. 2018. Molecular mechanisms driving transcriptional stress responses. Nat Rev Genet 19:385–397. https://doi.org/10.1038/s41576-018-0001-6.
  • Adelman K, Lis JT. 2012. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13:720–731. https://doi.org/10.1038/nrg3293.
  • Lis JT, Mason P, Peng J, Price DH, Werner J. 2000. P-TEFb kinase recruitment and function at heat shock loci. Genes Dev 14:792–803. https://doi.org/10.1101/gad.14.7.792.
  • Mahat DB, Salamanca HH, Duarte FM, Danko CG, Lis JT. 2016. Mammalian heat shock response and mechanisms underlying its genome-wide transcriptional regulation. Mol Cell 62:63–78. https://doi.org/10.1016/j.molcel.2016.02.025.
  • Li M, Ma D, Chang Z. 2021. Current understanding of CREPT and p15RS, carboxy-terminal domain (CTD)-interacting proteins, in human cancers. Oncogene 40:705–716. https://doi.org/10.1038/s41388-020-01544-0.
  • Lu D, Wu Y, Wang Y, Ren F, Wang D, Su F, Zhang Y, Yang X, Jin G, Hao X, He D, Zhai Y, Irwin DM, Hu J, Sung JJ, Yu J, Jia B, Chang Z. 2012. CREPT accelerates tumorigenesis by regulating the transcription of cell-cycle-related genes. Cancer Cell 21:92–104. https://doi.org/10.1016/j.ccr.2011.12.016.
  • Wang Y, Qiu H, Hu W, Li S, Yu J. 2014. RPRD1B promotes tumor growth by accelerating the cell cycle in endometrial cancer. Oncol Rep 31:1389–1395. https://doi.org/10.3892/or.2014.2990.
  • She Y, Liang J, Chen L, Qiu Y, Liu N, Zhao X, Huang X, Wang Y, Ren F, Chang Z, Li P. 2014. CREPT expression correlates with poor prognosis in patients with retroperitoneal leiomyosarcoma. Int J Clin Exp Pathol 7:6596–6605.
  • Zheng G, Li W, Zuo B, Guo Z, Xi W, Wei M, Chen P, Wen W, Yang AG. 2016. High expression of CREPT promotes tumor growth and is correlated with poor prognosis in colorectal cancer. Biochem Biophys Res Commun 480:436–442. https://doi.org/10.1016/j.bbrc.2016.10.067.
  • Ma J, Ren Y, Zhang L, Kong X, Wang T, Shi Y, Bu R. 2017. Knocking-down of CREPT prohibits the progression of oral squamous cell carcinoma and suppresses cyclin D1 and c-Myc expression. PLoS One 12:e0174309. https://doi.org/10.1371/journal.pone.0174309.
  • Li W, Zheng G, Xia J, Yang G, Sun J, Wang X, Wen M, Sun Y, Zhang Z, Jin F. 2018. Cell cycle-related and expression-elevated protein in tumor overexpression is associated with proliferation behaviors and poor prognosis in non-small-cell lung cancer. Cancer Sci 109:1012–1023. https://doi.org/10.1111/cas.13524.
  • Zhang Y, Wang S, Kang W, Liu C, Dong Y, Ren F, Wang Y, Zhang J, Wang G, To KF, Zhang X, Sung JJ, Chang Z, Yu J. 2018. CREPT facilitates colorectal cancer growth through inducing Wnt/beta-catenin pathway by enhancing p300-mediated beta-catenin acetylation. Oncogene 37:3485–3500. https://doi.org/10.1038/s41388-018-0161-z.
  • Wen N, Bian L, Gong J, Meng Y. 2020. Overexpression of cell-cycle related and expression-elevated protein in tumor (CREPT) in malignant cervical cancer. J Int Med Res 48:300060519895089. https://doi.org/10.1177/0300060519895089.
  • Ma D, Zou Y, Chu Y, Liu Z, Liu G, Chu J, Li M, Wang J, Sun SY, Chang Z. 2020. A cell-permeable peptide-based PROTAC against the oncoprotein CREPT proficiently inhibits pancreatic cancer. Theranostics 10:3708–3721. https://doi.org/10.7150/thno.41677.
  • Liu H, Seynhaeve ALB, Brouwer RWW, van IWFJ, Yang L, Wang Y, Chang Z, Ten Hagen TLM. 2019. CREPT promotes melanoma progression through accelerated proliferation and enhanced migration by RhoA-mediated actin filaments and focal adhesion formation. Cancers (Basel) 12:33. https://doi.org/10.3390/cancers12010033.
  • Yin H, Cao Q, Zhao H, Wang S, Chen W, Zhang X, Chang Z, Xu T, Ye X. 2019. Expression of CREPT is associated with poor prognosis of patients with renal cell carcinoma. Oncol Lett 18:4789–4797. https://doi.org/10.3892/ol.2019.10831.
  • Ni Z, Olsen JB, Guo X, Zhong G, Ruan ED, Marcon E, Young P, Guo H, Li J, Moffat J, Emili A, Greenblatt JF. 2011. Control of the RNA polymerase II phosphorylation state in promoter regions by CTD interaction domain-containing proteins RPRD1A and RPRD1B. Transcription 2:237–242. https://doi.org/10.4161/trns.2.5.17803.
  • Ni Z, Xu C, Guo X, Hunter GO, Kuznetsova OV, Tempel W, Marcon E, Zhong G, Guo H, Kuo WW, Li J, Young P, Olsen JB, Wan C, Loppnau P, El Bakkouri M, Senisterra GA, He H, Huang H, Sidhu SS, Emili A, Murphy S, Mosley AL, Arrowsmith CH, Min J, Greenblatt JF. 2014. RPRD1A and RPRD1B are human RNA polymerase II C-terminal domain scaffolds for Ser5 dephosphorylation. Nat Struct Mol Biol 21:686–695. https://doi.org/10.1038/nsmb.2853.
  • Morales JC, Richard P, Rommel A, Fattah FJ, Motea EA, Patidar PL, Xiao L, Leskov K, Wu SY, Hittelman WN, Chiang CM, Manley JL, Boothman DA. 2014. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair. Nucleic Acids Res 42:4996–5006. https://doi.org/10.1093/nar/gku160.
  • Kim M, Krogan NJ, Vasiljeva L, Rando OJ, Nedea E, Greenblatt JF, Buratowski S. 2004. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432:517–522. https://doi.org/10.1038/nature03041.
  • Zhang Y, Liu C, Duan X, Ren F, Li S, Jin Z, Wang Y, Feng Y, Liu Z, Chang Z. 2014. CREPT/RPRD1B, a recently identified novel protein highly expressed in tumors, enhances the beta-catenin.TCF4 transcriptional activity in response to Wnt signaling. J Biol Chem 289:22589–22599. https://doi.org/10.1074/jbc.M114.560979.
  • Ali I, Ruiz DG, Ni Z, Johnson JR, Zhang H, Li PC, Khalid MM, Conrad RJ, Guo X, Min J, Greenblatt J, Jacobson M, Krogan NJ, Ott M. 2019. Crosstalk between RNA Pol II C-terminal domain acetylation and phosphorylation via RPRD proteins. Mol Cell 74:1164–1174. https://doi.org/10.1016/j.molcel.2019.04.008.
  • Cugusi S, Mitter R, Kelly GP, Walker J, Han Z, Pisano P, Wierer M, Stewart A, Svejstrup JQ. 2022. Heat shock induces premature transcript termination and reconfigures the human transcriptome. Mol Cell 8:1573–1588. https://doi.org/10.1016/j.molcel.2022.01.007.
  • Gregersen LH, Mitter R, Ugalde AP, Nojima T, Proudfoot NJ, Agami R, Stewart A, Svejstrup JQ. 2019. SCAF4 and SCAF8, mRNA anti-terminator proteins. Cell 177:1797–1813. https://doi.org/10.1016/j.cell.2019.04.038.
  • Schwalb B, Michel M, Zacher B, Fruhauf K, Demel C, Tresch A, Gagneur J, Cramer P. 2016. TT-seq maps the human transient transcriptome. Science 352:1225–1228. https://doi.org/10.1126/science.aad9841.
  • Gregersen LH, Mitter R, Svejstrup JQ. 2020. Using TTchem-seq for profiling nascent transcription and measuring transcript elongation. Nat Protoc 15:604–627. https://doi.org/10.1038/s41596-019-0262-3.
  • Medlin J, Scurry A, Taylor A, Zhang F, Peterlin BM, Murphy S. 2005. P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes. EMBO J 24:4154–4165. https://doi.org/10.1038/sj.emboj.7600876.
  • Pirngruber J, Shchebet A, Schreiber L, Shema E, Minsky N, Chapman RD, Eick D, Aylon Y, Oren M, Johnsen SA. 2009. CDK9 directs H2B monoubiquitination and controls replication-dependent histone mRNA 3'-end processing. EMBO Rep 10:894–900. https://doi.org/10.1038/embor.2009.108.
  • Ni Z, Schwartz BE, Werner J, Suarez JR, Lis JT. 2004. Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes. Mol Cell 13:55–65. https://doi.org/10.1016/s1097-2765(03)00526-4.
  • Laitem C, Zaborowska J, Isa NF, Kufs J, Dienstbier M, Murphy S. 2015. CDK9 inhibitors define elongation checkpoints at both ends of RNA polymerase II-transcribed genes. Nat Struct Mol Biol 22:396–403. https://doi.org/10.1038/nsmb.3000.
  • Boehm AK, Saunders A, Werner J, Lis JT. 2003. Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol Cell Biol 23:7628–7637. https://doi.org/10.1128/MCB.23.21.7628-7637.2003.
  • Dubois MF, Bellier S, Seo SJ, Bensaude O. 1994. Phosphorylation of the RNA polymerase II largest subunit during heat shock and inhibition of transcription in HeLa cells. J Cell Physiol 158:417–426. https://doi.org/10.1002/jcp.1041580305.
  • Lavoie SB, Albert AL, Handa H, Vincent M, Bensaude O. 2001. The peptidyl-prolyl isomerase Pin1 interacts with hSpt5 phosphorylated by Cdk9. J Mol Biol 312:675–685. https://doi.org/10.1006/jmbi.2001.4991.
  • Medlin JE, Uguen P, Taylor A, Bentley DL, Murphy S. 2003. The C-terminal domain of pol II and a DRB-sensitive kinase are required for 3' processing of U2 snRNA. EMBO J 22:925–934. https://doi.org/10.1093/emboj/cdg077.
  • Dubois MF, Vincent M, Vigneron M, Adamczewski J, Egly JM, Bensaude O. 1997. Heat-shock inactivation of the TFIIH-associated kinase and change in the phosphorylation sites on the C-terminal domain of RNA polymerase II. Nucleic Acids Res 25:694–700. https://doi.org/10.1093/nar/25.4.694.
  • Park JM, Werner J, Kim JM, Lis JT, Kim YJ. 2001. Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock. Mol Cell 8:9–19. https://doi.org/10.1016/S1097-2765(01)00296-9.
  • Kim S, Gross DS. 2013. Mediator recruitment to heat shock genes requires dual Hsf1 activation domains and mediator tail subunits Med15 and Med16. J Biol Chem 288:12197–12213. https://doi.org/10.1074/jbc.M112.449553.
  • Wang T, Wei JJ, Sabatini DM, Lander ES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84. https://doi.org/10.1126/science.1246981.
  • Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, Irizarry RA, Liu JS, Brown M, Liu XS. 2014. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol 15:554. https://doi.org/10.1186/s13059-014-0554-4.
  • Kovacs D, Sigmond T, Hotzi B, Bohar B, Fazekas D, Deak V, Vellai T, Barna J. 2019. HSF1Base: a comprehensive database of HSF1 (heat shock factor 1) target genes. Int J Mol Sci 20:5815. https://doi.org/10.3390/ijms20225815.
  • Alagar Boopathy LR, Jacob-Tomas S, Alecki C, Vera M. 2022. Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges. J Biol Chem 298:101796. https://doi.org/10.1016/j.jbc.2022.101796.
  • Hipp MS, Kasturi P, Hartl FU. 2019. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 20:421–435. https://doi.org/10.1038/s41580-019-0101-y.
  • Guertin MJ, Petesch SJ, Zobeck KL, Min IM, Lis JT. 2010. Drosophila heat shock system as a general model to investigate transcriptional regulation. Cold Spring Harbor Symp Quant Biol 75:1–9. https://doi.org/10.1101/sqb.2010.75.039.
  • Wiltenburg J, Lubsen NH. 1976. A differential effect of the incubation temperature on the inhibition of RNA synthesis by DRB in cells of Drosophila hydei. FEBS Lett 70:17–22. https://doi.org/10.1016/0014-5793(76)80717-x.
  • Egyhazi E, Ossoinak A, Lee JM, Greenleaf AL, Makela TP, Pigon A. 1998. Heat-shock-specific phosphorylation and transcriptional activity of RNA polymerase II. Exp Cell Res 242:211–221. https://doi.org/10.1006/excr.1998.4112.
  • Giardina C, Lis JT. 1993. Polymerase processivity and termination on Drosophila heat shock genes. J Biol Chem 268:23806–23811. https://doi.org/10.1016/S0021-9258(20)80456-6.
  • Ni Z, Saunders A, Fuda NJ, Yao J, Suarez JR, Webb WW, Lis JT. 2008. P-TEFb is critical for the maturation of RNA polymerase II into productive elongation in vivo. Mol Cell Biol 28:1161–1170. https://doi.org/10.1128/MCB.01859-07.
  • Burchfiel ET, Vihervaara A, Guertin MJ, Gomez-Pastor R, Thiele DJ. 2021. Comparative interactomes of HSF1 in stress and disease reveal a role for CTCF in HSF1-mediated gene regulation. J Biol Chem 296:100097. https://doi.org/10.1074/jbc.RA120.015452.
  • Zhang L, Hu Z, Zhang Y, Huang J, Yang X, Wang J. 2019. Proteomics analysis of proteins interacting with heat shock factor 1 in squamous cell carcinoma of the cervix. Oncol Lett 18:2568–2575. https://doi.org/10.3892/ol.2019.10539.
  • Takii R, Fujimoto M, Matsumoto M, Srivastava P, Katiyar A, Nakayama KI, Nakai A. 2019. The pericentromeric protein shugoshin 2 cooperates with HSF1 in heat shock response and RNA Pol II recruitment. EMBO J 38:e102566. https://doi.org/10.15252/embj.2019102566.
  • Smith RS, Takagishi SR, Amici DR, Metz K, Gayatri S, Alasady MJ, Wu Y, Brockway S, Taiberg SL, Khalatyan N, Taipale M, Santagata S, Whitesell L, Lindquist S, Savas JN, Mendillo ML. 2022. HSF2 cooperates with HSF1 to drive a transcriptional program critical for the malignant state. Sci Adv 8:eabj6526. https://doi.org/10.1126/sciadv.abj6526.
  • Yu S, Huang H, Wang S, Xu H, Xue Y, Huang Y, He J, Xu X, Wu Z, Wu J, Zhang Y, Huang Q, Chang Z, Li E, Xu L. 2019. CREPT is a novel predictor of the response to adjuvant therapy or concurrent chemoradiotherapy in esophageal squamous cell carcinoma. Int J Clin Exp Pathol 12:3301–3310.
  • Tufegdzic Vidakovic A, Mitter R, Kelly G, Neumann M, Harreman M, Rodriguez Martinez M, Herlihy A, Weems JC, Boeing S, Encheva V, Gaul L, Milligan L, Tollervey D, Conaway RC, Conaway JW, Snijders AP, Stewart A, Svejstrup JQ. 2020. Regulation of the RNAPII pool is integral to the DNA damage response. Cell 180:1245–1261.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.