202
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Replication Protein A Phosphorylation Facilitates RAD52-Dependent Homologous Recombination in BRCA-Deficient Cells

, ORCID Icon, ORCID Icon, , &
Article: e00524-21 | Received 09 Dec 2021, Accepted 15 Dec 2021, Published online: 27 Feb 2023

REFERENCES

  • Ciccia A, Elledge SJ. 2010. The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204. https://doi.org/10.1016/j.molcel.2010.09.019.
  • Dueva R, Iliakis G. 2020. Replication protein A: a multifunctional protein with roles in DNA replication, repair and beyond. NAR Cancer 2:zcaa022. https://doi.org/10.1093/narcan/zcaa022.
  • Hartlerode AJ, Scully R. 2009. Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J 423:157–168. https://doi.org/10.1042/BJ20090942.
  • Heyer WD, Ehmsen KT, Liu J. 2010. Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139. https://doi.org/10.1146/annurev-genet-051710-150955.
  • Shiotani B, Zou L. 2009. Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol Cell 33:547–558. https://doi.org/10.1016/j.molcel.2009.01.024.
  • Jensen RB, Carreira A, Kowalczykowski SC. 2010. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467:678–683. https://doi.org/10.1038/nature09399.
  • Liu J, Doty T, Gibson B, Heyer WD. 2010. Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol 17:1260–1262. https://doi.org/10.1038/nsmb.1904.
  • Sung P. 1997. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J Biol Chem 272:28194–28197. https://doi.org/10.1074/jbc.272.45.28194.
  • New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC. 1998. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391:407–410. https://doi.org/10.1038/34950.
  • Rijkers T, Van Den Ouweland J, Morolli B, Rolink AG, Baarends WM, Van Sloun PP, Lohman PH, Pastink A. 1998. Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol Cell Biol 18:6423–6429. https://doi.org/10.1128/MCB.18.11.6423.
  • Yamaguchi-Iwai Y, Sonoda E, Buerstedde JM, Bezzubova O, Morrison C, Takata M, Shinohara A, Takeda S. 1998. Homologous recombination, but not DNA repair, is reduced in vertebrate cells deficient in RAD52. Mol Cell Biol 18:6430–6435. https://doi.org/10.1128/MCB.18.11.6430.
  • Liu J, Heyer WD. 2011. Who's who in human recombination: BRCA2 and RAD52. Proc Natl Acad Sci USA 108:441–442. https://doi.org/10.1073/pnas.1016614108.
  • Feng Z, Scott SP, Bussen W, Sharma GG, Guo G, Pandita TK, Powell SN. 2011. Rad52 inactivation is synthetically lethal with BRCA2 deficiency. Proc Natl Acad Sci USA 108:686–691. https://doi.org/10.1073/pnas.1010959107.
  • Brouwer I, Zhang H, Candelli A, Normanno D, Peterman EJG, Wuite GJL, Modesti M. 2017. Human RAD52 captures and holds DNA strands, increases DNA flexibility, and prevents melting of duplex DNA: implications for DNA recombination. Cell Rep 18:2845–2853. https://doi.org/10.1016/j.celrep.2017.02.068.
  • Shen Z, Cloud KG, Chen DJ, Park MS. 1996. Specific interactions between the human RAD51 and RAD52 proteins. J Biol Chem 271:148–152. https://doi.org/10.1074/jbc.271.1.148.
  • Hanamshet K, Mazina OM, Mazin AV. 2016. Reappearance from obscurity: mammalian Rad52 in homologous recombination. Genes (Basel) 7:63. https://doi.org/10.3390/genes7090063.
  • Chen R, Wold MS. 2014. Replication protein A: single-stranded DNA's first responder. Bioessays 36:1156–1161. https://doi.org/10.1002/bies.201400107.
  • Xu X, Vaithiyalingam S, Glick Gloria G, Mordes Daniel A, Chazin Walter J, Cortez D. 2008. The basic cleft of RPA70N binds multiple checkpoint proteins, including RAD9, to regulate ATR signaling. Mol Cell Biol 28:7345–7353. https://doi.org/10.1128/MCB.01079-08.
  • Brill SJ, Stillman B. 1991. Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev 5:1589–1600. https://doi.org/10.1101/gad.5.9.1589.
  • Wang Y, Putnam CD, Kane MF, Zhang W, Edelmann L, Russell R, Carrión DV, Chin L, Kucherlapati R, Kolodner RD, Edelmann W. 2005. Mutation in Rpa1 results in defective DNA double-strand break repair, chromosomal instability and cancer in mice. Nat Genet 37:750–755. https://doi.org/10.1038/ng1587.
  • Hass CS, Gakhar L, Wold MS. 2010. Functional characterization of a cancer causing mutation in human replication protein A. Mol Cancer Res 8:1017–1026. https://doi.org/10.1158/1541-7786.MCR-10-0161.
  • Park MS, Ludwig DL, Stigger E, Lee SH. 1996. Physical interaction between human RAD52 and RPA is required for homologous recombination in mammalian cells. J Biol Chem 271:18996–19000. https://doi.org/10.1074/jbc.271.31.18996.
  • Wang H, Guan J, Wang H, Perrault AR, Wang Y, Iliakis G. 2001. Replication protein A2 phosphorylation after DNA damage by the coordinated action of ataxia telangiectasia-mutated and DNA-dependent protein kinase. Cancer Res 61:8554–8563.
  • Block WD, Yu Y, Lees-Miller SP. 2004. Phosphatidyl inositol 3-kinase-like serine/threonine protein kinases (PIKKs) are required for DNA damage-induced phosphorylation of the 32 kDa subunit of replication protein A at threonine 21. Nucleic Acids Res 32:997–1005. https://doi.org/10.1093/nar/gkh265.
  • Oakley GG, Loberg LI, Yao J, Risinger MA, Yunker RL, Zernik-Kobak M, Khanna KK, Lavin MF, Carty MP, Dixon K. 2001. UV-induced hyperphosphorylation of replication protein a depends on DNA replication and expression of ATM protein. Mol Biol Cell 12:1199–1213. https://doi.org/10.1091/mbc.12.5.1199.
  • Byrne BM, Oakley GG. 2019. Replication protein A, the laxative that keeps DNA regular: the importance of RPA phosphorylation in maintaining genome stability. Semin Cell Dev Biol 86:112–120. https://doi.org/10.1016/j.semcdb.2018.04.005.
  • Shi W, Feng Z, Zhang J, Gonzalez-Suarez I, Vanderwaal RP, Wu X, Powell SN, Roti Roti JL, Gonzalo S, Zhang J. 2010. The role of RPA2 phosphorylation in homologous recombination in response to replication arrest. Carcinogenesis 31:994–1002. https://doi.org/10.1093/carcin/bgq035.
  • Vassin VM, Wold MS, Borowiec JA. 2004. Replication protein A (RPA) phosphorylation prevents RPA association with replication centers. Mol Cell Biol 24:1930–1943. https://doi.org/10.1128/MCB.24.5.1930-1943.2004.
  • Feng J, Wakeman T, Yong S, Wu X, Kornbluth S, Wang XF. 2009. Protein phosphatase 2A-dependent dephosphorylation of replication protein A is required for the repair of DNA breaks induced by replication stress. Mol Cell Biol 29:5696–5709. https://doi.org/10.1128/MCB.00191-09.
  • Lee DH, Pan Y, Kanner S, Sung P, Borowiec JA, Chowdhury D. 2010. A PP4 phosphatase complex dephosphorylates RPA2 to facilitate DNA repair via homologous recombination. Nat Struct Mol Biol 17:365–372. https://doi.org/10.1038/nsmb.1769.
  • Deng X, Prakash A, Dhar K, Baia GS, Kolar C, Oakley GG, Borgstahl GE. 2009. Human replication protein A-Rad52-single-stranded DNA complex: stoichiometry and evidence for strand transfer regulation by phosphorylation. Biochemistry 48:6633–6643. https://doi.org/10.1021/bi900564k.
  • Pierce AJ, Johnson RD, Thompson LH, Jasin M. 1999. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 13:2633–2638. https://doi.org/10.1101/gad.13.20.2633.
  • Oakley GG, Tillison K, Opiyo SA, Glanzer JG, Horn JM, Patrick SM. 2009. Physical interaction between replication protein A (RPA) and MRN: involvement of RPA2 phosphorylation and the N-terminus of RPA1. Biochemistry 48:7473–7481. https://doi.org/10.1021/bi900694p.
  • Olson E, Nievera CJ, Klimovich V, Fanning E, Wu X. 2006. RPA2 is a direct downstream target for ATR to regulate the S-phase checkpoint. J Biol Chem 281:39517–39533. https://doi.org/10.1074/jbc.M605121200.
  • Serrano MA, Li Z, Dangeti M, Musich PR, Patrick S, Roginskaya M, Cartwright B, Zou Y. 2013. DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair. Oncogene 32:2452–2462. https://doi.org/10.1038/onc.2012.257.
  • Wu X, Yang Z, Liu Y, Zou Y. 2005. Preferential localization of hyperphosphorylated replication protein A to double-strand break repair and checkpoint complexes upon DNA damage. Biochem J 391:473–480. https://doi.org/10.1042/BJ20050379.
  • Stark JM, Pierce AJ, Oh J, Pastink A, Jasin M. 2004. Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol 24:9305–9316. https://doi.org/10.1128/MCB.24.21.9305-9316.2004.
  • Lok BH, Carley AC, Tchang B, Powell SN. 2013. RAD52 inactivation is synthetically lethal with deficiencies in BRCA1 and PALB2 in addition to BRCA2 through RAD51-mediated homologous recombination. Oncogene 32:3552–3558. https://doi.org/10.1038/onc.2012.391.
  • Fujimori A, Tachiiri S, Sonoda E, Thompson LH, Dhar PK, Hiraoka M, Takeda S, Zhang Y, Reth M, Takata M. 2001. Rad52 partially substitutes for the Rad51 paralog XRCC3 in maintaining chromosomal integrity in vertebrate cells. EMBO J 20:5513–5520. https://doi.org/10.1093/emboj/20.19.5513.
  • Jensen RB, Ozes A, Kim T, Estep A, Kowalczykowski SC. 2013. BRCA2 is epistatic to the RAD51 paralogs in response to DNA damage. DNA Repair (Amst) 12:306–311. https://doi.org/10.1016/j.dnarep.2012.12.007.
  • Chun J, Buechelmaier ES, Powell SN. 2013. Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol Cell Biol 33:387–395. https://doi.org/10.1128/MCB.00465-12.
  • Whelan DR, Lee WTC, Yin Y, Ofri DM, Bermudez-Hernandez K, Keegan S, Fenyo D, Rothenberg E. 2018. Spatiotemporal dynamics of homologous recombination repair at single collapsed replication forks. Nat Commun 9:3882. https://doi.org/10.1038/s41467-018-06435-3.
  • Hatchi E, Goehring L, Landini S, Skourti-Stathaki K, DeConti DK, Abderazzaq FO, Banerjee P, Demers TM, Wang YE, Quackenbush J, Livingston DM. 2021. BRCA1 and RNAi factors promote repair mediated by small RNAs and PALB2–RAD52. Nature 591:665–670. https://doi.org/10.1038/s41586-020-03150-2.
  • Anantha RW, Vassin VM, Borowiec JA. 2007. Sequential and synergistic modification of human RPA stimulates chromosomal DNA repair. J Biol Chem 282:35910–35923. https://doi.org/10.1074/jbc.M704645200.
  • Liu S, Opiyo SO, Manthey K, Glanzer JG, Ashley AK, Amerin C, Troksa K, Shrivastav M, Nickoloff JA, Oakley GG. 2012. Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress. Nucleic Acids Res 40:10780–10794. https://doi.org/10.1093/nar/gks849.
  • Liaw H, Lee D, Myung K. 2011. DNA-PK-dependent RPA2 hyperphosphorylation facilitates DNA repair and suppresses sister chromatid exchange. PLoS One 6:e21424. https://doi.org/10.1371/journal.pone.0021424.
  • Soniat MM, Myler LR, Kuo HC, Paull TT, Finkelstein IJ. 2019. RPA phosphorylation inhibits DNA resection. Mol Cell 75:145–153.E145. https://doi.org/10.1016/j.molcel.2019.05.005.
  • Robison JG, Elliott J, Dixon K, Oakley GG. 2004. Replication protein A and the Mre11.Rad50.Nbs1 complex co-localize and interact at sites of stalled replication forks. J Biol Chem 279:34802–34810. https://doi.org/10.1074/jbc.M404750200.
  • Bochkareva E, Kaustov L, Ayed A, Yi G-S, Lu Y, Pineda-Lucena A, Liao JCC, Okorokov AL, Milner J, Arrowsmith CH, Bochkarev A. 2005. Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc Natl Acad Sci USA 102:15412–15417. https://doi.org/10.1073/pnas.0504614102.
  • Murphy AK, Fitzgerald M, Ro T, Kim JH, Rabinowitsch AI, Chowdhury D, Schildkraut CL, Borowiec JA. 2014. Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery. J Cell Biol 206:493–507. https://doi.org/10.1083/jcb.201404111.
  • Grimme JM, Honda M, Wright R, Okuno Y, Rothenberg E, Mazin AV, Ha T, Spies M. 2010. Human Rad52 binds and wraps single-stranded DNA and mediates annealing via two hRad52-ssDNA complexes. Nucleic Acids Res 38:2917–2930. https://doi.org/10.1093/nar/gkp1249.
  • Ma CJ, Kwon Y, Sung P, Greene EC. 2017. Human RAD52 interactions with replication protein A and the RAD51 presynaptic complex. J Biol Chem 292:11702–11713. https://doi.org/10.1074/jbc.M117.794545.
  • Stefanovie B, Hengel SR, Mlcouskova J, Prochazkova J, Spirek M, Nikulenkov F, Nemecek D, Koch BG, Bain FE, Yu L, Spies M, Krejci L. 2020. DSS1 interacts with and stimulates RAD52 to promote the repair of DSBs. Nucleic Acids Res 48:694–708. https://doi.org/10.1093/nar/gkz1052.
  • Jackson D, Dhar K, Wahl JK, Wold MS, Borgstahl GE. 2002. Analysis of the human replication protein A:Rad52 complex: evidence for crosstalk between RPA32, RPA70, Rad52 and DNA. J Mol Biol 321:133–148. https://doi.org/10.1016/S0022-2836(02)00541-7.
  • Hays SL, Firmenich AA, Massey P, Banerjee R, Berg P. 1998. Studies of the interaction between Rad52 protein and the yeast single-stranded DNA binding protein RPA. Mol Cell Biol 18:4400–4406. https://doi.org/10.1128/MCB.18.7.4400.
  • Borgstahl GEO, Brader K, Mosel A, Liu S, Kremmer E, Goettsch KA, Kolar C, Nasheuer H-P, Oakley GG. 2014. Interplay of DNA damage and cell cycle signaling at the level of human replication protein A. DNA Repair (Amst) 21:12–23. https://doi.org/10.1016/j.dnarep.2014.05.005.
  • Park MS. 1995. Expression of human RAD52 confers resistance to ionizing radiation in mammalian cells. J Biol Chem 270:15467–15470. https://doi.org/10.1074/jbc.270.26.15467.
  • Liu Y, Maizels N. 2000. Coordinated response of mammalian Rad51 and Rad52 to DNA damage. EMBO Rep 1:85–90. https://doi.org/10.1093/embo-reports/kvd002.
  • Yanez RJ, Porter AC. 2002. Differential effects of Rad52p overexpression on gene targeting and extrachromosomal homologous recombination in a human cell line. Nucleic Acids Res 30:740–748. https://doi.org/10.1093/nar/30.3.740.
  • Kurumizaka H, Aihara H, Kagawa W, Shibata T, Yokoyama S. 1999. Human Rad51 amino acid residues required for Rad52 binding. J Mol Biol 291:537–548. https://doi.org/10.1006/jmbi.1999.2950.
  • Wray J, Liu J, Nickoloff JA, Shen Z. 2008. Distinct RAD51 associations with RAD52 and BCCIP in response to DNA damage and replication stress. Cancer Res 68:2699–2707. https://doi.org/10.1158/0008-5472.CAN-07-6505.
  • Essers J, Houtsmuller AB, van Veelen L, Paulusma C, Nigg AL, Pastink A, Vermeulen W, Hoeijmakers JH, Kanaar R. 2002. Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage. EMBO J 21:2030–2037. https://doi.org/10.1093/emboj/21.8.2030.
  • Davis AP, Symington LS. 2003. The Rad52-Rad59 complex interacts with Rad51 and replication protein A. DNA Repair (Amst) 2:1127–1134. https://doi.org/10.1016/S1568-7864(03)00121-6.
  • Mer G, Bochkarev A, Gupta R, Bochkareva E, Frappier L, Ingles CJ, Edwards AM, Chazin WJ. 2000. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 103:449–456. https://doi.org/10.1016/S0092-8674(00)00136-7.
  • Singleton MR, Wentzell LM, Liu Y, West SC, Wigley DB. 2002. Structure of the single-strand annealing domain of human RAD52 protein. Proc Natl Acad Sci USA 99:13492–13497. https://doi.org/10.1073/pnas.212449899.
  • Reddy G, Golub EI, Radding CM. 1997. Human Rad52 protein promotes single-strand DNA annealing followed by branch migration. Mutat Res 377:53–59. https://doi.org/10.1016/S0027-5107(97)00057-2.
  • Van Dyck E, Stasiak AZ, Stasiak A, West SC. 2001. Visualization of recombination intermediates produced by RAD52-mediated single-strand annealing. EMBO Rep 2:905–909. https://doi.org/10.1093/embo-reports/kve201.
  • Rothenberg E, Grimme JM, Spies M, Ha T. 2008. Human Rad52-mediated homology search and annealing occurs by continuous interactions between overlapping nucleoprotein complexes. Proc Natl Acad Sci USA 105:20274–20279. https://doi.org/10.1073/pnas.0810317106.
  • Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. 2017. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18:529. https://doi.org/10.1186/s12859-017-1934-z.
  • Bolte S, Cordelières FP. 2006. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x.
  • Nuss JE, Patrick SM, Oakley GG, Alter GM, Robison JG, Dixon K, Turchi JJ. 2005. DNA damage induced hyperphosphorylation of replication protein A. 1. Identification of novel sites of phosphorylation in response to DNA damage. Biochemistry 44:8428–8437. https://doi.org/10.1021/bi0480584.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.