7
Views
22
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Role of Adenovirus E1B Proteins in Transformation: Altered Organization of Intermediate Filaments in Transformed Cells That Express the 19-Kilodalton Protein

&
Pages 120-130 | Received 04 Aug 1989, Accepted 10 Oct 1989, Published online: 01 Apr 2023

Literature Cited

  • Babfas, L. E., P. B., Flstoer, and H. S. Ginsberg 1984. Effect on transformation of mutations in the early region lb-encoded 21-and 55-kilodalton proteins of adenovirus S. J. Virol. 52: 389-395.
  • Ball, E. H., and S. J. Singer 1981. Association of microtubules and intermediate filaments in normal fibroblasts and its disruption upon transformation by a temperature-sensitive mutant of Rous sarcoma virus. Proc. Natl. Acad. Sci. USA 78: 6986-6990.
  • Barbacid, M. 1987. ras genes. Annu. Rev. Biochem. 56: 779-827.
  • Barker, D. D., and A. J. Berk 1987. Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 156: 107-121.
  • Berk, A. J. 1986. Adenovirus promoters and El A transactivation. Annu. Rev. Genet. 20: 45-79.
  • Bernards, R., M. G. W., deLeeuw, A., Houweling, and A. J. Van der Eb 1986. Role of the adenovirus early region 1B tumor antigens in transformation and lytic infection. Virology 150: 126-139.
  • Bernards, R., P. I., Sender, J. L., Bos, and A. J. Van der Eb 1983. Role of adenovirus type 5 and 12 early region lb tumor antigens in oncogenic transformation. Virology 127: 45-53.
  • Bishop, J. M. 1985. Viral oncogenes. Cell 42: 23-38.
  • Blair Zajdel, M., and G. E. Blair 1988. The intracellular distribution of the transformation-associated protein p53 in adenovirus-transformed rodent cells. Oncogene 2: 579-584.
  • Bolen, J. B., C. J., Thiele, M. A., Israel, W., Yonemoto, L. A., Lipsich, and J. S. Brugge 1984. Enhancement of cellular src gene product associated tyrosyl kinase activity following polyoma virus infection and transformation. Cell 38: 767-777.
  • Boshart, M., F., Weber, G., Jahn, K., Dorsch-Hasler, B., Flecken- stein, and W. Shaffner 1985. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41: 521-530.
  • Branton, P. E., S. T., Bayley, and F. L. Graham 1985. Transformation by human adenoviruses. Biochim. Biophys. Acta 780: 67-94.
  • Chan, D., A., Goate, and T. Puck 1989. Involvement of vimentin in the reverse transformation reaction. Proc. Natl. Acad. Sci. USA 86: 2747-2751.
  • Chinnadurai, G. 1983. Adenovirus 2 lp+ locus codes for a 19kd tumor antigen that plays an essential role in cell transformation. Cell 33: 759-766.
  • Cone, R. D., T., Grodzicker, and M. Jaramillo 1988. A retrovirus expressing the 12S adenoviral E1A gene product can immortalize epithelial cells from a broad range of rat tissues. Mol. Cell. Biol. 8: 1036-1044.
  • Cooper, H. L., N., Feuerstein, M., Noda, and R. H. Bassin 1985. Suppression of tropomyosin synthesis, a common biochemical feature of oncogenesis by structurally diverse retroviral oncogenes. Mol. Cell. Biol. 5: 972-983.
  • Courtneidge, S. A., and A. E. Smith 1984. The complex of polyoma virus middle-T antigen and pp60c-src. EMBO J. 3: 585-591.
  • Flint, S. J. 1984. Cellular transformation by adenovirus. Pharmacol. Ther. 26: 59-88.
  • Fukui, Y., I., Saito, K., Shiroki, and H. Shimojo 1984. Isolation of transformation-defective, replication-nondefective early region IB mutants of adenovirus 12. J. Virol. 49: 154-161.
  • Gallimore, P. H., P. A., Sharp, and J. Sambrook 1974. Viral DNA in transformed cells. II. A study of the sequences of adenovirus 2 DNA in nine lines of transformed cells using specific fragments of the viral genome. J. Mol. Biol. 89: 49-72.
  • Garrets, J. I., and B. R. Franza 1989. Transformation-sensitive and growth-regulated changes of protein synthesis in REF 52 cells: a two-dimensional gel analysis of SV40-, adenovirus-, and Kirsten murine sarcoma virus-transformed rat cells using the REF 52 protein database. J. Biol. Chem. 264: 5299-5312.
  • Glenney, J. R., and L. Zokas 1989. Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J. Cell Biol. 108: 2401-2408.
  • Graham, F. L., and A. J. Van der Eb 1973. A new technique for the assay of infectivity of adenovirus type 5 DNA. Virology 52: 456-467.
  • Graham, F. L., A. J., Van der Eb, and H. L. Heijneker 1974. Size and location of the transforming region in human adenovirus type 5. Nature (London) 251: 687-691.
  • Hendricks, M., and H. Weintraub 1981. Tropomyosin is decreased in transformed cells. Proc. Natl. Acad. Sci. USA 78: 5633-5637.
  • Houweling, A., P. J., Van den Elsen, and A. J. Van der Eb 1980. Partial transformation of primary rat cells by the leftmost 4.5% fragment of adenovirus 5 DNA. Virology 105: 537-550.
  • Hynes, R. O., and A. T. Destree 1978. 10 nm filaments in normal and transformed cells. Cell 13: 151-163.
  • Jochemsen, A. G., C. M., de Wit, J. L., Bos, and A. J. Van der Eb 1986. Transforming properties of a 15-kDa truncated Adl2 E1A gene product. Virology 152: 375-383.
  • Jochemsen, A. G., L. T. C., Peltenburg, M. F. W., te Pas, C. M., de Wit, J. L., Bos, and A. J. Van der Eb 1987. Activation of adenovirus 5 E1A transcription by region E1B in transformed primary rat cells. EMBO J. 6: 3399-3405.
  • Jones, N., and T. Shenk 1979. Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17: 683-689.
  • Kaczmarek, L., B., Ferguson, M., Rosenberg, and R. Baserga 1986. Induction of cellular DNA synthesis by purified adenovirus El A proteins. Virology 152: 1-10.
  • Leonardi, C. L., R. H., Warren, and R. W. Rubin 1982. Lack of tropomyosin correlates with the absence of stress fibers in transformed rat kidney cells. Biochim. Biophys. Acta 720: 154-162.
  • Liebowitz, D., R., Kopan, E., Fuchs, J., Sample, and E. Kieff 1987. An Epstein-Barr virus transforming protein associates with vimentin in lymphocytes. Mol. Cell. Biol. 7: 2299-2308.
  • Matsumura, F. J., J.-C. Lin, S., Yamashiro-Matsumura, G. P., Thomas, and W. C. Topp 1983. Differential expression of tropomyosin forms in the microfilaments isolated from normal and transformed rat cultured cells. J. Biol. Chem. 258: 13954-13964.
  • McKinnon, R. D., S., Bacchetti, and F. L. Graham 1982. Tn5 mutagenesis of the transforming genes of human adenovirus type 5. Gene 19: 33-42.
  • McNutt, N. S., L. A., Culp, and P. H. Black 1973. Contact- inhibited revertant cell lines isolated from SV-40 transformed cells. IV. Microfilament disruption and cell shape in untrans- formed, transformed, and revertant Balb/c 3T3 cells. J. Cell Biol. 56: 412-428.
  • Persson, H., M. G., Katze, and L. Philipson 1982. Purification of a native membrane-associated adenovirus tumor antigen. J. Virol. 42: 905-917.
  • Pilder, S., J., Logan, and T. Shenk 1984. Deletion of the gene encoding the adenovirus 5 early region IB 21,000-molecular- weight polypeptide leads to degradation of viral and cellular DNA. J. Virol. 52: 664-671.
  • PoUack, R., M., Osborn, and K. Weber 1975. Patterns of organization of actin and myosin in normal and transformed cultured cells. Proc. Natl. Acad. Sci. USA 72: 994-998.
  • Quinlan, M. P., and T. Grodzicker 1987. Adenovirus E1A 12S protein induces DNA synthesis and proliferation in primary epithelial cells in both the presence and absence of serum. J. Virol. 61: 673-682.
  • Rowe, D. T., P. E., Branton, S., Yee, S., Bacchetti, and F. L. Graham 1984. Establishment and characterization of hamster cell lines transformed by restriction endonuclease fragments of adenovirus 5. J. Virol. 49: 162-170.
  • Ruley, H. E. 1983. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature (London) 304: 602-606.
  • Sarnow, P., Y., Shin Ho, J., Williams, and A. J. Levine 1982. Adenovirus Elb-58 kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell 28: 387-394.
  • Senear, A. W., and J. B. Lewis 1986. Morphological transformation of established rodent cell lines by high-level expression of the adenovirus type 2 E1A gene. Mol. Cell. Biol. 6: 1253-1260.
  • ShaUoway, D., P. J., Johnson, E. O., Freed, D., Coulter, and W. A. Flood 1987. Transformation of NIH 3T3 cells by cotransfection with c-src and nuclear oncogenes. Mol. Cell. Biol. 7: 3582-3590.
  • Shiroki, K., K., Maruyama, I., Saito, Y., Fukui, and H. Shimojo 1981. Incomplete transformation of rat cells by a deletion of adenovirus 5. J. Virol. 38: 1048-1054.
  • Shiroki, K., H., Shimojo, Y., Sawada, Y., Uemizu, and K. Fuji- naga 1979. Incomplete transformation of rat cells by a small fragment of Adl2 DNA. Virology 95: 127-136.
  • Stabel, S., P., Argos, and L. Philipson 1985. The release of growth arrest by microinjection of adenovirus El A DNA. EMBO J. 4: 2329-2336.
  • Steinert, P., and D. R. Roop 1988. Molecular and cellular biology of intermediate filaments. Annu. Rev. Biochem. 57: 593-625.
  • Subramanian, T., M., Kuppuswamy, and G. Chinnadurai 1985. An adenovirus 2-coded tumor antigen located on the endoplasmic reticulum and nuclear envelope is required for growth of transformed cells in Ca2+-deficient media. Mol. Cell. Biol. 5: 3297-3300.
  • Subramanian, T., M., Kuppuswamy, S., Mak, and G. Chinnadurai 1984. Adenovirus cyt+ locus, which controls cell transformation and tumorigenicity, is an allele of lp+ locus, which codes for a 19-kilodalton tumor antigen. J. Virol. 52: 336-343.
  • Takemori, N., C., Cladaras, B., Bhat, A. J., Conley, and W. S. M. Wold 1984. cyt gene of adenoviruses 2 and 5 is an oncogene for transforming function in early region E1B and encodes the E1B 19,000-molecular-weight polypeptide. J. Virol. 52: 793-805.
  • Van den Elsen, P., S., de Pater, A., Houweling, and A. J. Van der Eb 1983. Expression of region Elb of human adenovirus in the absence of El A is not sufficient for complete transformation. Virology 128: 377-390.
  • Van den Elsen, P., A., Houweling, and A. J. Van der Eb 1983. Morphological transformation of human adenoviruses is determined to a large extent by the products of region El A. Virology 131: 242-246.
  • Van der Eb, A. J., C., Mulder, F. L., Graham, and A. Houweling 1977. Transformation with specific fragments of adenovirus DNAs. I. Isolation of specific fragments with transforming activity of adenovirus 2 and 5 DNA. Gene 2: 115-132.
  • Van der Eb, A. J., H., Van Ormondt, P. I., Schrier, J. H., Lupker, H., Jochemsen, P. J., Van den Elsen, J., DeLeys, J., Maat, C. P., Van Beveren, R., Dijkema, and A. De Waard 1979. Structure and function of the transforming genes of human adenoviruses and SV40. Cold Spring Harbor Symp. Quant. Biol. 44: 383-399.
  • White, E., S. H., Blose, and B. W. Stillman 1984. Nuclear envelope localization of an adenovirus tumor antigen maintains the integrity of cellular DNA. Mol. Cell. Biol. 4: 2865-2875.
  • White, E., and R. Cipriani 1989. Specific disruption of intermediate filaments and the nuclear lamina by the 19-kilodalton product of the adenovirus E1B oncogene. Proc. Natl. Acad. Sci. USA 86: 9886-9890.
  • White, E., A., Denton, and B. Stillman 1988. Role of the adenovirus E1B 19,000-dalton tumor antigen in regulating early gene expression. J. Virol. 62: 3445-3454.
  • White, E., B., Faha, and B. Stillman 1986. Regulation of adenovirus gene expression in human WI38 cells by an E1B- encoded tumor antigen. Mol. Cell. Biol. 6: 3763-3773.
  • White, E., T., Grodzicker, and B. W. Stillman 1984. Mutations in the gene encoding the adenovirus early region IB 19,000- molecular-weight tumor antigen cause degradation of chromosomal DNA. J. Virol. 52: 410-419.
  • White, E., D., Spector, and W. Welch 1988. Differential distribution of the adenovirus E1A proteins and colocalization of El A with the 70-kilodalton cellular heat shock protein in infected cells. J. Virol. 62: 4153-4166.
  • Whyte, P., K. J., Buchkovich, J. N., Horowitz, S. H., Friend, M., Raybuck, R. A., Weinberg, and E. Harlow 1988. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature (London) 334: 124-129.
  • Whyte, P., N. M., Williamson, and E. Harlow 1989. Cellular targets for transformation by the adenovirus El A proteins. Cell 56: 67-75.
  • Zantema, A., J. A. M., Fransen, A., Davis-Olivier, F. C. S., Ramaekers, G. P., Vooijs, B., DeVleys, and A. J. Van der Eb 1985. Localization of the E1B proteins of adenovirus 5 in transformed cells, as revealed by interaction with monoclonal antibodies. Virology 142: 44-58.
  • Zantema, A., P. I., Schrier, A., Davis-Olivier, T., Van Laar, R. T. M., Vaessen, and A. J. Van der Eb 1985. Adenovirus serotype determines association and localization of the large E1B tumor antigen with cellular tumor antigen p53 in transformed cells. Mol. Cell. Biol. 5: 3084-3091.
  • Zerler, B., B., Moran, K., Maruyama, J., Moomaw, T., Grod- zicker, and H. E. Ruley 1986. Adenovirus E1A coding sequences that enable ras and pmt oncogenes to transform cultured primary cells. Mol. Cell. Biol. 6: 887-899.
  • Zerler, B., R. J., Roberts, M. B., Mathews, and E. Moran 1987. DhTerent functional domains of the adenovirus El A gene are involved in regulation of host cell cycle products. Mol. Cell. Biol. 7: 821-829.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.