6
Views
14
CrossRef citations to date
0
Altmetric
Gene Expression

REB1, a Yeast DNA-Binding Protein with Many Targets, Is Essential for Cell Growth and Bears Some Resemblance to the Oncogene myb

, &
Pages 5226-5234 | Received 23 Apr 1990, Accepted 06 Jul 1990, Published online: 31 Mar 2023

Literature Cited

  • Anton, I. A., and J. Frampton. 1988. Tryptophans in myb proteins. Nature (London) 336:719.
  • Belenguer, P., V. Baldin, C. Mathieu, H. Prats, M. Bensaid, G. Bouche, and F. Amalric. 1989. Protein kinase NII and the regulation of rDNA transcription in mammalian cells. Nucleic Acids Res. 17:6625-6635.
  • Brandl, C. J., and K. Struhl. 1990. A nucleosome-positioning sequence is required for GCN4 to activate transcription in the absence of a TATA element. Mol. Cell. Biol. 10:4256-5265.
  • Chasman, D. I., N. F. Lue, A. R. Buchman, J. W. LaPointe, Y. Lorch, and R. D. Kornberg. 1990. A yeast protein that influences the chromatin structure of UASG and functions as a powerful auxiliary gene activator. Genes Dev. 4:503-514.
  • Dayhoff, M. O., R. M. Schwartz, and B. C. Orcutt. 1978. A model of evolutionary change in proteins, p. 345-352. In M. O. Dayhoff (ed.), Atlas of protein sequence and structure, vol. 5. National Biomedical Research Foundation, Silver Spring, Md.
  • Elion, E. A., and J. R. Warner. 1986. An RNA polymerase I enhancer in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:2089-2097.
  • Elion, E. A., and J. R. Warner. 1987. Characterization of a yeast RNA polymerase I enhancer. UCLA Symp. Mol. Cell. Biol. New Series 52:21-29.
  • Fedor, M. J., N. F. Lue, and R. D. Kornberg. 1988. Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeast. J. Mol. Biol. 204:109-127.
  • Finley, R. L., Jr., and R. W. West, Jr. 1989. Differential repression of GAL4 and adjacent transcription activators by operators in the yeast GAL upstream activating sequence. Mol. Cell. Biol. 9:4282-4290.
  • Gunther, C. V., J. A. Nye, R. S. Bryner, and B. J. Graves. 1990. Sequence-specific DNA binding of the proto-oncoprotein cts-1 defines a transcriptional activator sequence within the long terminal repeat of the Moloney murine sarcoma virus. Genes Dev. 4:667-679.
  • Halfter, H., B. Kavety, J. Vandekerckhove, F. Kiefer, and D. Gallwitz. 1989. Sequence, expression and mutational analysis of BAF1, a transcriptional activator and ARS1-binding protein ofthe yeast Saccharomyces cerevisiae. EMBO J. 8:4265-4272.
  • Hope, I. A., and K. Struhl. 1986. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46:885-894.
  • Huet, J., and A. Sentenac. 1987. TUF, the DNA-binding factor specific for UASrpg upstream activating sequences: identification of the protein and its DNA-binding domain. Proc. Natl. Acad. Sci. USA 84:3648-3652.
  • Innis, M. A., K. B. Myambo, D. H. Gelfand, and M. A. Brow. 1988. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc. Natl. Acad. Sci. USA 24:9436-9440.
  • Jantzen, H.-M., A. Admon, S. P. Bell, and R. Tjian. 1990. Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature (London) 344:830-836.
  • Johnson, L. M., M. Snyder, L. M. Chang, R. W. David, and J. L. Campbell. 1985. Isolation of the gene encoding yeast DNA polymerase I. Cell 43:369-377.
  • Johnson, S. P., and J. R. Warner. 1989. Unusual enhancer function in yeast rRNA transcription. Mol. Cell. Biol. 9:4986-4993.
  • Jones, E. W. 1977. Proteinase mutants of Saccharomyces cerevisiae. Genetics 85:23-33.
  • Kempers-Veenstra, A. E., J. Oliemans, H. Offenberg, A. F. Dekker, P. W. Piper, R. J. Planta, and J. Klootwijk. 1986. 3′-End formation of transcripts from the yeast rRNA operon. EMBO J. 5:2703-2710.
  • Klempnauer, K.-H., T. J. Gonda, and J. M. Bishop. 1982. Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb: the architecture of a transduced oncogene. Cell 31:453-463.
  • Klempnauer, K.-H., and A. E. Sippel. 1987. The highly conserved amino-terminal region of the protein encoded by the v-myb oncogene functions as a DNA-binding domain. EMBO J. 6:2719-2725.
  • Kulkens, T., H. Van Heerikhuizen, J. Klootwijk, J. Oliemans, and R. J. Planta. 1989. A yeast ribosomal DNA-binding protein that binds to the rDNA enhancer and also close to the site of Pol I transcription initiation is not important for enhancer functioning. Curr. Genet. 16:351-359.
  • Landschulz, W. H., P. F. Johnson, and S. L. McKnight. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759-1764.
  • Lohr, D. 1983. Chromatin structure differs between coding and upstream flanking sequences of the yeast 35S ribosomal genes. Biochemistry 22:927-934.
  • Lüscher, B., E. Christenson, D. W. Litchfield, E. G. Krebs, and R. N. Eisenman. 1990. myb DNA binding inhibited by phosphorylation at a site deleted during oncogenic activation. Nature (London) 344:517-521.
  • Ma, J., and M. Ptashne. 1987. A new class of yeast transcriptional activators. Cell 51:113-119.
  • Mestel, R., M. Yip, J. P. Holland, E. Wang, J. Kang, and M. J. Holland. 1989. Sequences within the spacer region of yeast rRNA cistrons that stimulate 35S rRNA synthesis in vivo mediate RNA polymerase I-dependent promoter and terminator activities. Mol. Cell. Biol. 9:1243-1254.
  • Morrow, B. E., S. P. Johnson, and J. R. Warner. 1989. Proteins that bind to the yeast rDNA enhancer. J. Biol. Chem. 264:9061-9068.
  • Murre, C., P. S. McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and Myc proteins. Cell 56:777-783.
  • Pearson, W. R., and D. J. Lipman. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85:2444-2448.
  • Rhode, P. R., K. S. Sweder, K. F. Oegema, and J. L. Campbell. 1989. The gene encoding ARS-binding factor I is essential for the viability of yeast. Genes Dev. 3:1926-1939.
  • Rhodes, D., and A. Klug. 1986. An underlying repeat in some transcriptional control sequences corresponding to half a double helical turn of DNA. Cell 46:123-132.
  • Rothstein, R. 1983. One-step disruption in yeast. Methods Enzymol. 101:202-211.
  • Shen-Ong, G. L. C., H. C. Morse III, M. Potter, and F. Mushinski. 1986. Two modes of c-myb activation in virus- induced mouse myeloid tumors. Mol. Cell. Biol. 6:380-392.
  • Shore, D., and K. Nasmyth. 1987. Purification and cloning of a DNA-binding protein that binds to both silencer and activator elements. Cell 51:721-732.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19-27.
  • Singh, H., J. H. LeBowitz, A. S. Baldwin, Jr., and Phillip A. Sharp. 1988. Molecular cloning of an enhancer binding protein: isolation by screening of an expression library with a recognition site DNA. Cell 52:415-423.
  • Sorger, P. K., and H. R. B. Pelham. 1987. Purification and characterization of a heat-shock element-binding protein from yeast. EMBO J. 6:3035-3041.
  • Sorger, P. K., and H. R. Pelham. 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperaturedependent phosphorylation. Cell 54:855-864.
  • Thomas, B. J., and R. Rothstein. 1989. Elevated recombination rates in transcriptionally active DNA. Cell 56:619-630.
  • Tice-Baldwin, K., G. R. Fink, and K. T. Arndt. 1989. BAS1 has a Myb motif and activates HIS4 transcription only in combination with BAS2. Science 246:931-935.
  • Vinson, C. R., K. L. LaMarco, P. F. Johnson, W. H. Landschulz, and S. L. McKnight. 1988. In situ detection of sequence-specific DNA binding activity specified by a recombinant bacteriophage. Genes Dev. 2:801-806.
  • Wang, H., P. R. Nicholson, and D. J. Stillman. 1990. Identification of a Saccharomyces cerevisiae DNA-binding protein involved in transcriptional regulation. Mol. Cell. Biol. 10:1743-1753.
  • West, R. W., R. R. Yocum, and M. Ptashne. 1984. Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG. Mol. Cell. Biol. 4:2467-2478.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.