3
Views
7
CrossRef citations to date
0
Altmetric
Gene Expression

Opposing Regulatory Functions of Positive and Negative Elements in UASg Control Transcription of the Yeast GAL Genes

, , , &
Pages 5663-5670 | Received 16 May 1990, Accepted 06 Aug 1990, Published online: 31 Mar 2023

Literature Cited

  • Arndt, K., and G. R. Fink. 1986. GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5′ TGACTC 3′ sequences. Proc. Natl. Acad. Sci. USA 83:8516-8520.
  • Blasquez, V. C., A. O. Sperry, P. N. Cockerill, and W. T. Garrard. 1989. Protein: DNA interactions at chromosomal loop attachment sites. Genome 31:503-509.
  • Bram, R. J., and R. D. Kornberg. 1985. Specific protein binding to far upstream activating sequences in polymerase II promoters. Proc. Natl. Acad. Sci. USA 82:43-47.
  • Bram, R. J., N. F. Lue, and R. D. Kornberg. 1986. A GAL family of upstream activating sequences in yeast: roles in both induction and repression of transcription. EMBO J. 5:603-608.
  • Brent, R., and M. Ptashne. 1984. A bacterial repressor protein or a yeast transcriptional terminator can block upstream activation of a yeast gene. Nature (London) 312:612-615.
  • Brent, R., and M. Ptashne. 1985. A eukaryotic transcription activator bearing the DNA specificity of a prokaryotic repressor. Cell 43:729-736.
  • Chasman, D. L., N. F. Lue, A. R. Buchman, J. W. Lapointe, Y. Lorch, and R. D. Kornberg. 1990. A yeast protein that influences the chromatin structure of UASG and functions as a powerful auxiliary gene activator. Genes Dev. 4:503-514.
  • Clark-Adams, C. D., D. Norris, M. A. Osley, J. S. Fassler, and F. Winston. 1988. Changes in histone gene dosage alter transcription in yeast. Genes Dev. 2:150-159.
  • Cockerill, P. N., M.-H. Yuen, and W. T. Garrard. 1987. The enhancer of the immunoglobulin heavy chain locus is flanked by presumptive chromosomal loop anchorage elements. J. Biol. Chem. 262:5394-5397.
  • Finley, R. L., Jr., and R. W. West, Jr. 1989. Differential repression of GAL4 and adjacent transcription activators by operators in the yeast GAL upstream activating sequence. Mol. Cell. Biol. 9:4282-4290.
  • Forsburg, S. L., and L. Guarente. 1989. Identification and characterization of HAP4: a third component of the CCAAT- bound HAP2/HAP3 heteromer. Genes Dev. 3:1166-1178.
  • Giniger, E., S. M. Varnum, and M. Ptashne. 1985. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40:767-774.
  • Guarente, L., and E. Hoar. 1984. Upstream activation sites of the CYC1 gene of Saccharomyces cerevisiae are active when inverted but not when placed downstream of the “TATA box.” Proc. Natl. Acad. Sci. USA 81:7860-7864.
  • Guarente, L., and T. Mason. 1983. Heme regulates transcription of the CYCl gene of 5. cerevisiae via an upstream activation site. Cell 32:1279-1286.
  • Guarente, L., and M. Ptashne. 1981. Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78:2199-2203.
  • Guarente, L., R. R. Yocum, and P. Gifford. 1982. A GAL10- CYC1 hybrid yeast promoter identifies the GALA regulatory region as an upstream site. Proc. Natl. Acad. Sci. USA 79:7410-7414.
  • Han, M., and M. Grunstein. 1988. Nucleosome loss activates yeast downstream promoters in vivo. Cell 55:1137-1145.
  • Hinnebusch, A. G., G. Lucchini, and G. R. Fink. 1985. A synthetic HIS4 regulatory element confers general amino acid control on the cytochrome c gene (CYCl) of yeast. Proc. Natl. Acad. Sci. USA 82:498-502.
  • Izaurralde, E., E. Kas, and U. K. Laemmli. 1989. Highly preferential nucleation of histone H1 assembly on scaffold-associated regions. J. Mol. Biol. 210:573-585.
  • Johnston, M. 1987. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol. Rev. 51:458-476.
  • Johnston, M., and R. W. Davis. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1440-1448.
  • Johnston, S. A., J. M. Salmeron, and S. S. Dincher. 1987. Interactions of positive and negative regulatory proteins in the galactose regulon of yeast. Cell 50:143-146.
  • Keegan, L., G. Gill, and M. Ptashne. 1986. Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science 231:699-704.
  • Leu, N. F., D. I. Chasman, A. R. Buchman, and R. D. Kornberg. 1987. Interaction of GAIA and GAL80 gene regulatory proteins in vitro. Mol. Cell. Biol. 7:3446-3451.
  • Lohr, D., and J. E. Hopper. 1985. The relationship of regulatory proteins and DNase I hypersensitive sites in the yeast GAL1-10 genes. Nucleic Acids Res. 13:8409-8423.
  • Ma, J., and M. Ptashne. 1987. The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50:137-142.
  • Matern, H., and H. Holzer. 1977. Catabolite inactivation of the galactose uptake system in yeast. J. Biol. Chem. 252:6399-6402.
  • Matsumoto, K. T., T. Yoshimatsu, and Y. Oshima. 1983. Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae. J. Bacteriol. 153:1405-1414.
  • Miller, J. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Pfeifer, K., T. Prezant, and L. Guarente. 1987. Yeast HAP1 activator binds to two upstream activation sites of different sequence. Cell 49:19-27.
  • Ramos, J., K. Szkutnicka, and V. P. Cirillo. 1989. Characteristics or galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles. J. Bacteriol. 171:3539-3544.
  • Ruden, D. M., J. Ma, and M. Ptashne. 1988. No strict alignment is required between a transcriptional activator binding site and the “TATA box” of a yeast gene. Proc. Natl. Acad. Sci. USA 85:4262-4266.
  • Selleck, S. B., and J. E. Majors. 1987. In vivo DNA-binding properties of a yeast transcription activator protein. Mol. Cell. Biol. 7:3260-3267.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • St. John, T. P., and R. W. Davis. 1981. The organization and transcription of the galactose gene cluster of Saccharomyces. J. Mol. Biol. 152:285-315.
  • Struhl, K. 1985. Negative control at a distance mediates catabolite repression in yeast. Nature (London) 317:822-824.
  • Wang, H., P. R. Nicholson, and D. J. Stillman. 1990. Identification of a Saccharomyces cerevisiae DNA-binding protein involved in transcriptional regulation. Mol. Cell. Biol. 10:1743-1753.
  • West, R. W., Jr., S. Chen, H. Putz, G. Butler, and M. Banerjee. 1987. GAL1-GAL10 divergent promoter region of Saccharomyces cerevisiae contains negative control elements in addition to functionally separate and possibly overlapping upstream activating sequences. Genes Dev. 1:1118-1131.
  • West, R. W., Jr., R. R. Yocum, and M. Ptashne. 1984. Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG. Mol. Cell. Biol. 4:2467-2478.
  • Yocum, R. R., S. Hanley, R. W. West, Jr., and M. Ptashne. 1984. Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1985-1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.