1
Views
10
CrossRef citations to date
0
Altmetric
Chromosome Structure and Dynamics

Multiple Origins of Replication in the Dihydrofolate Reductase Amplicons of a Methotrexate-Resistant Chinese Hamster Cell Line

, &
Pages 1338-1346 | Received 14 Sep 1989, Accepted 07 Dec 1989, Published online: 31 Mar 2023

Literature Cited

  • Anachkova, B., and J. L. Hamlin. 1989. Replication in the amplified dihydrofolate reductase domain in CHO cells may initiate at two distinct sites, one of which is a repetitive sequence element. Mol. Cell. Biol. 9:532–540.
  • Ardeshir, F., E. Giulotto, J. Zieg, O. Brison, W. S. L. Liav, and G. R. Stark. 1983. Structure of amplified DNA in different Syrian hamster cell lines resistant to N-(phosphonacetyl)-L-aspartate. Mol. Cell. Biol. 3:2076–2088.
  • Ariga, H., T. Itani, and S. M. M. Iguchi-Ariga. 1987. Autonomous replicating sequences from mouse cells which can replicate in mouse cells in vivo and in vitro. Mol. Cell. Biol. 7:1–6.
  • Biedler, J. L., and B. A. Spengler. 1976. A novel chromosome abnormality in human neuroblastoma and antifolate-resistant Chinese hamster cells in culture. J. Natl. Cancer Inst. 57:683–695.
  • Braunstein, J. D., D. Schulze, T. DelGiudice, A. Furst, and C. L. Schildkraut. 1982. The temporal order of replication of murine immunoglobulin heavy chain constant region sequences corresponds to their linear order in the genome. Nucleic Acids Res. 10:6887–6902.
  • Brewer, B. J., and W. L. Fangman. 1987. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51:463–471.
  • Brewer, B. J., and W. L. Fangman. 1988. A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55:637–643.
  • Burhans, W. C., J. E. Selegue, and N. H. Heintz. 1986. Isolation of the origin of replication associated with the amplified Chinese hamster dihydrofolate reductase domain. Proc. Natl. Acad. Sci. USA 83:7790–7794.
  • Carri, M. T., G. Micheli, E. Graziano, T. Pace, and M. Buongiorno-Nardelli. 1986. The relationship between chromosomal origins and the nuclear matrix during the cell cycle. Exp. Cell Res. 164:426–436.
  • Cook, P. R., and I. A. Brazell. 1976. Conformational constraints in nuclear DNA. J. Cell Sci. 22:287–302.
  • Cummings, J. E., and H. P. Rusch. 1966. Limited DNA synthesis in the absence of protein synthesis in Physarum polycephalum. J. Cell Biol. 32:577–583.
  • Dijkwel, P. A., and J. L. Hamlin. 1988. Matrix attachment regions are positioned near replication initiation sites, genes, and an interamplicon junction in the amplified dihydrofolate reductase domain of Chinese hamster ovary cells. Mol. Cell. Biol. 8:5398–5409.
  • Dfikwel, P. A., P. Wenink, and J. Poddighe. 1986. Permanent attachment of replication origins to the nuclear matrix in BHK cells. Nucleic Acids Res. 14:3241–3249.
  • Duncan, C., and M. Leffak. 1987. A sequence 5′ to the human c-myc gene allows autonomous replication of a selectable plasmid in HeLa cells, p. 160. In T. J. Kelly and B. Stillman (ed.). Cancer cells: eukaryotic DNA replication. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Federspiel, N. A., S. M. Beverley, J. W. Schilling, and R. T. Schimke. 1984. Novel DNA rearrangements are associated with dihydrofolate reductase gene amplification. J. Biol. Chem. 259:9127–9140.
  • Feinberg, A. P., and B. Vogelstein. 1983. High specific activity labeling of DNA restriction endonuclease fragments. Anal. Biochem. 132:6–13.
  • Ford, M., and M. Fried. 1986. Large inverted duplications are associated with gene amplification. Cell 45:425–430.
  • Foreman, P. K., and J. L. Hamlin. 1989. Identification and characterization of a gene that is coamplified with dihydrofolate reductase in a methotrexate-resistant CHO cell line. Mol. Cell. Biol. 9:1137–1147.
  • Frappier, L., and M. Zannis-Hadjopoulos. 1987. Autonomous replication of plasmids bearing monkey DNA origin-enriched sequences. Proc. Natl. Acad. Sci. USA 84:6668–6672.
  • Gahn, T. A., and C. L. Schildkraut. 1989. The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell 58:527–535.
  • Gardiner, K., W. Laas, and D. Patterson. 1986. Fractionation of large mammalian DNA restriction fragments using vertical pulsed-field gradient gel electrophoresis. Somatic Cell Mol. Genet. 12:185–195.
  • Goldman, M. A., G. P. Holmquist, M. C. Gray, L. A. Caston, and A. Nag. 1984. Replication timing of genes and middle repetitive sequences. Science 224:686–692.
  • Gross-Bellard, M., P. Oudet, and P. Chambon. 1978. Isolation of high molecular weight DNA from mammalian cells. Eur. J. Biochem. 36:32–38.
  • Guilotto, E., I. Saito, and G. R. Stark. 1986. Structure of DNA formed in the first step of CAD gene amplification. EMBO J. 5:2115–2121.
  • Hamlin, J. L., and J. L. Biedler. 1981. Replication pattern of a large homogeneously staining chromosome region in antifolateresistant Chinese hamster cell lines. J. Cell. Physiol. 107:101–114.
  • Hamlin, J. L., J. D. Milbrandt, N. H. Heintz, and J. C. Azizkhan. 1984. DNA sequence amplification in mammalian cells. Int. Rev. Cytol. 90:31–82.
  • Hand, R. 1978. Eukaryotic DNA: organization of the genome for replication. Cell 15:317–325.
  • Handeli, S., A. Klar, M. Meuth, and H. Cedar. 1989. Mapping replication units in animal cells. Cell 57:908–909.
  • Hatton, K. S., V. Dhar, E. H. Brown, M. A. Iqbal, S. Stuart, V. T. Didamo, and C. L. Schildkraut. 1988. The replication program of active and inactive multigene families in mammalian cells. Mol. Cell. Biol. 8:2149–2158.
  • Heintz, N. H., and J. L. Hamlin. 1982. An amplified chromosomal sequence that includes the gene for dihydrofolate reductase initiates replication within specific restriction fragments. Proc. Natl. Acad. Sci. USA 79:4083–4087.
  • Huberman, J. H., and A. D. Riggs. 1972. On the mechanism of DNA replication in mammalian chromosomes. J. Mol. Biol. 32:327–341.
  • James, D. C., and M. Leffak. 1986. Polarity of DNA replication through the avian alpha-globin locus. Mol. Cell. Biol. 6:976–984.
  • Krysan, P. J., S. B. Haase, and M. P. Calos. 1989. Isolation of human sequences that replicate autonomously in human cells. Mol. Cell. Biol. 9:1026–1033.
  • Labarca, C., and K. Paigen. 1980. A simple, rapid, and sensitive DNA assay procedure. Anal. Biochem. 102:344–352.
  • Leu, T.-H., and J. L. Hamlin. 1989. High resolution mapping of replication fork movement through the amplified dihydrofolate reductase domain in CHO cells by in-gel renaturation. Mol. Cell. Biol. 9:523–531.
  • Linskens, M. H. K., and J. A. Huberman. 1988. Organization of replication of ribosomal DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4927–1935.
  • Looney, J. E., and J. L. Hamlin. 1987. Isolation of the amplified dihydrofolate reductase domain from methotrexate-resistant Chinese hamster ovary cells. Mol. Cell. Biol. 7:569–577.
  • Looney, J. E., C. Ma, T.-H. Leu, W. F. Flintoff, W. B. Troutman, and J. L. Hamlin. 1988. The dihydrofolate reductase amplicons in different methotrexate-resistant Chinese hamster cell lines share at least a 273-kilobase core sequence, but the amplicons in some cell lines are much larger and are remarkably uniform in structure. Mol. Cell. Biol. 8:5268–5279.
  • Ma, C., J. E. Looney, T.-H. Leu, and J. L. Hamlin. 1988. Organization and genesis of dihydrofolate reductase amplicons in the genome of a methotrexate-resistant Chinese hamster ovary cell line. Mol. Cell. Biol. 8:2316–2327.
  • Meyn, R. E., R. R. Hewitt, and R. M. Humphrey. 1973. Evaluation of S phase synchronization by analysis of DNA replication in 5'-bromodeoxyuridine. Exp. Cell Res. 83:137–142.
  • Milbrandt, J. D., J. C. Azizkhan, K. S. Greisen, and J. L. Hamlin. 1983. Organization of a Chinese hamster ovary dihy drofolate reductase gene identified by phenotypic rescue. Mol. Cell. Biol. 3:1266–1273.
  • Milbrandt, J. D., N. H. Heintz, W. C. White, S. M. Rothman, and J. L. Hamlin. 1981. Methotrexate-resistant Chinese hamster ovary cells have amplified a 135 kilobase pair region that includes the gene for dihydrofolate reductase. Proc. Natl. Acad. Sci. USA 78:6043–6047.
  • Montoya-Zavala, M., and J. L. Hamlin. 1985. Similar 150-kilobase DNA sequences are amplified in independently derived methotrexate-resistant Chinese hamster cells. Mol. Cell. Biol. 5:619–627.
  • Nelson, W. G., K. J. Pienta, E. R. Barrack, and D. S. Coffey. 1986. The role of the nuclear matrix in the organization and function of DNA. Annu. Rev. Biophys. Biophys. Chem. 15:457–475.
  • Nunberg, J. H., R. J. Kaufman, R. T. Schimke, G. Urlaub, and L. A. Chasin. 1978. Amplified dihydrofolate reductase genes are localized to a homogenously staining region of a single chromosome in a methotrexate-resistant Chinese hamster ovary cell line. Proc. Natl. Acad. Sci. USA 75:5553–5556.
  • Owens, G. K., P. S. Rabinovitch, and S. M. Schwartz. 1981. Smooth muscle cell hypertrophy versus hyperplasia in hypertension. Proc. Natl. Acad. Sci. USA 78:7759–7763.
  • Razin, S. V., M. G. Kekelidze, E. M. Lukanidin, K. Scherrer, and G. P. Georgiev. 1986. Replication origins are attached to the nuclear matrix. Nucleic Acids Res. 14:8189–8207.
  • Reed, K. C., and D. A. Mann. 1985. Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res. 13:7207–7221.
  • Roninson, I. 1983. Detection and mapping of homologous, repeated and amplified DNA sequences by DNA renaturation in agarose gels. Nucleic Acids Res. 11:5413–5431.
  • Schimke, R. T. 1984. Gene amplification in cultured animal cells. Cell 37:705–713.
  • Schimke, R. T. (ed.). 1982. Gene amplification, p. 317–333. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Siedman, M. M., A. J. Levine, and H. Weintraub. 1979. The asymmetric segregation of parental nucleosomes during chromosome replication. Cell 18:439–449.
  • Stark, G. R., and G. M. Wahl. 1984. Gene amplification. Annu. Rev. Biochem. 53:447–491.
  • Stubblefield, E. 1975. Analysis of the replication pattern of Chinese hamster chromosomes using 5′ bromodeoxyuridine suppression of 33258 Hoescht fluorescence. Chromosoma 53:209–221.
  • Taljanidisz, J., J. Popowski, and N. Sarkar. 1989. Temporal order of gene replication in Chinese hamster ovary cells. Mol. Cell. Biol. 9:2881–2889.
  • Vogelstein, B., D. M. Pardoll, and D. S. Coffey. 1980. Supercoiled loops and eukaryotic DNA replication. Cell 22:79–85.
  • Wahl, G. M., K. A. Lewis, J. C. Ruiz, B. Rothenberg, J. Zhao, and G. A. Evans. 1987. Cosmid vectors for rapid genomic walking, restriction mapping, and gene transfer. Proc. Natl. Acad. Sci. USA 84:2160–2164.
  • Yeung, C. Y., L. G. Frayne, M. R. Al-Ubaidi, A. G. Hook, D. A. Wright, and R. E. Kellems. 1983. Amplification and molecular cloning of murine adenosine deaminase gene sequences. J. Biol. Chem. 258:15179–15185.
  • Yurov, Y. B., and N. A. Liapunova. 1977. The units of DNA replication in the mammalian chromosomes: evidence for a large size of replication units. Chromosoma 60:253–267.
  • Zannis-Hadjopoulos, M., M. Persico, and R. G. Martin. 1981. The remarkable instability of replication loops provides a general method for the isolation of origins of DNA replication. Cell 27:155–163.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.