1
Views
6
CrossRef citations to date
0
Altmetric
Gene Expression

Regulation of the Chicken Embryonic Myosin Light-Chain (L23) Gene: Existence of a Common Regulatory Element Shared by Myosin Alkali Light-Chain Genes

, , &
Pages 2562-2569 | Received 17 Oct 1989, Accepted 22 Feb 1990, Published online: 01 Apr 2023

Literature Cited

  • Akerblom, I. E., E. P. Slater, M. Beato, J. D. Baxter, and P. L. Mallon. 1988. Negative regulation by glucocorticoides through interference with a cAMP responsive enhancer. Science 241:350–353.
  • Bouvagnet, P. F., E. E. Strehler, G. E. White, B. Strehler-Page, B. Nadal-Ginard, and V. Mahdavi. 1987. Multiple positive and negative 5′ regulatory elements control the cell-type-specific expression of the embryonic skeletal myosin heavy-chain gene. Mol. Cell. Biol. 7:4377–4389.
  • Boxer, L. M., R. Prywes, R. G. Roeder, and L. Kedes. 1989. The sarcomeric actin CArG-binding factor is indistinguishable from the c-fos serum response factor. Mol. Cell. Biol. 9:515–522.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Cauthier, G. F., S. Lowey, P. A. Benfield, and A. W. Hobbs. 1982. Distribution and properties of myosin isozymes in developing avian and mammalian skeletal muscle fibers. J. Cell. Biol. 92:471–484.
  • Daubas, P., B. Robert, I. Carner, and M. Buckingham. 1985. A comparison between mammalian and avian fast skeletal muscle alkali myosin light chain genes: regulatory implications. Nucleic Acids Res. 13:4623–4643.
  • Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000.
  • Devlin, P. B., and C. Emerson, Jr. 1979. Coordinate accumulation of contractile protein mRNAs during myoblast differentiation. Dev. Biol. 69:202–216.
  • Fujisawa-Sehara, A., K. Sogawa, C. Nishi, and Y. Fujii-Kuriyama. 1986. Regulatory DNA elements localized remotely upstream from the drug-metabolizing cytochrome P-450c gene. Nucleic Acids Res. 14:1465–1477.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyl-transferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Goodbourn, S., and T. Maniatis. 1988. Overlapping positive and negative regulatory domains of the human β-interferon gene. Proc. Natl. Acad. Sci. USA 85:1447–1451.
  • Gorski, K., M. Carneiro, and U. Schibler. 1986. Tissue-specific in vitro transcription from the mouse albumin promoter. Cell 47:767–776.
  • Gustafson, T. A., E. O. George, M. Muscat, A. Taylor, L. M. Boxer, T. Miwa, and L. Kedes. 1989. Mechanisms of differential expression of the cardiac and skeletal α-actin genes. Mol. Cell. Biol. 9:635–652.
  • Kawashima, M., Y. Nabeshima, T. Obinata, and Y. Fujii-Kuriyama. 1987. A common myosin light chain is expressed in chicken embryonic skeletal, cardiac, and smooth muscles and in brain continuously from embryo to adult. J. Biol. Chem. 262:14408–14414.
  • Kronstad, J. W., J. A. Holly, and V. L. Mackay. 1987. A yeast operator overlaps an upstream activation site. Cell 50:369–377.
  • Lassar, A. B., J. N. Buskin, D. Lockshon, R. L. Davis, S. Apone, S. D. Hauschka, and H. Weintraub. 1989. MyoD is a sequence- specific DNA binding protein requiring a region of myc homology to bind to the muscle creatin kinase enhancer. Cell 58:823–831.
  • Lopata, M. A., D. W. Cleveland, and B. Sollner-Webb. 1984. High level transient expression of a chloramphenicol acetyl transferase gene by DEAE-dextran mediated DNA transfection coupled with a dimethyl sulfoxide or glycerol shock treatment. Nucleic Acids Res. 12:5707–5717.
  • Minty, A., and L. Kedes. 1986. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif. Mol. Cell. Biol. 6:2125–2136.
  • Miwa, T., L. M. Boxer, and L. Kedes. 1987. CArG boxes in the human cardiac α-actin gene are core binding sites for positive trans-acting regulatory factors. Proc. Natl. Acad. Sci. USA 84:6702–6706.
  • Miwa, T., and L. Kedes. 1987. Duplicated CArG box have positive and mutually dependent regulatory roles in expression of the human α-cardiac actin gene. Mol. Cell. Biol. 7:2803–2813.
  • Mohun, T., N. Garrett, and R. Treisman. 1987. Xenopus cyto- skeletal actin and human c-fos promoters share a conserved protein binding site. EMBO J. 6:667–673.
  • Mohun, T. J., M. V. Taylor, N. Garrett, and J. B. Gurdon. 1989. The CArG promoter sequence is necessary for muscle-specific transcription of the cardiac actin gene in Xenopus embryos. EMBO J. 8:1153–1161.
  • Muscat, G. E. O., T. A. Gustafson, and L. Kedes. 1988. A common factor regulates skeletal and cardiac α-actin gene transcription in muscle. Mol. Cell. Biol. 8:4120–4133.
  • Nabeshima, Y., Y. Fujii-Kuriyama, M. Muramatsu, and K. Ogata. 1984. Alternative transcription and two modes of splicing result in two myosin light chains from one gene. Nature (London) 308:333–338.
  • Nabeshima, Y., Y. Nabeshima, M. Kawashima, S. Nakamura, Y. Nonomura, and Y. Fujii-Kuriyama. 1988. Isolation of the chick myosin light chain gene expressed in embryonic gizzard muscle and transitional expression of the light chain gene family in vivo. J. Mol. Biol. 204:497–505.
  • Nabeshima, Y., Y. Nabeshima, Y. Nonomura, and Y. Fujii-Kuriyama. 1987. Nonmuscle and smooth muscle myosin light chain mRNAs are generated from a single gene by the tissue- specific alternative RNA splicing. J. Biol. Chem. 262:10608–10612.
  • Nabeshima, Y., M. Fujii-Kuriyama, M. Muramatsu, and K. Ogata. 1982. Molecular cloning and nucleotide sequences of the complementary DNAs to chicken skeletal muscle myosin two alkali light chain mRNAs. Nucleic Acids Res. 10:6099–6110.
  • Nakamura, S., Y. Nabeshima, H. Kobayashi, Y. Nabeshima, Y. Nonomura, and Y. Fujii-Kuriyama. 1988. Single chicken cardiac myosin alkali light-chain gene generates two different mRNAs by alternative splicing of a complex exon. J. Mol. Biol. 203:895–904.
  • Norman, C., M. Runswick, R. Pollock, and R. Treisman. 1988. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55:989–1003.
  • Obinata, T., T. Masaki, and H. Takano-Ohmuro, T. Tanaka, and N. Shimizu. 1983. Coexistence of cardiac-type and fast skeletal-type myosin light chains in embryonic chicken cardiac muscle. J. Biochem. (Tokyo) 94:1025–1028.
  • Robert, B., P. Daubas, M.-A. Akimenko, A. Cohen, I. Garner, J.-L. Guenet, and M. Buckingham. 1984. A single locus in the mouse encodes both myosin light chains 1 and 3, a second locus corresponds to a related pseudogene. Cell 39:129–140.
  • Ryan, W. A., Jr., B. R. Franza, Jr., and M. Z. Gilman. 1989. Two distinct cellular phosphoproteins bind to the c-fos serum response element. EMBO J. 8:1785–1792.
  • Shirakata, M., Y. Nabeshima, K. Konishi, and Y. Fujii-Kuriyoma. 1988. Upstream regulatory region for inducible expression of the chicken skeletal myosin alkali light chain gene. Mol. Cell. Biol. 8:2581–2588.
  • Singh, H., R. Sen, D. Baltimore, and P. A. Sharp. 1986. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature (London) 319:154–158.
  • Strehler, E. E., M. Periasamy, M.-A. Strehler-Page, and B. Nadal-Ginard. 1985. Myosin light-chain 1 and 3 gene has two structurally distinct and differentially regulated promoters evolving at different rates. Mol. Cell. Biol. 5:3168–3182.
  • Taylor, M., R. Treisman, N. Garrett, and T. Mohun. 1989. Muscle-specific (CArG) and serum-responsive (SRE) promoter elements are functionally interchangeable in Xenopus embryos and mouse fibroblasts. Genes Dev. 106:67–78.
  • Treisman, R. 1985. Transient accumulation of c-fos RNA fol lowing serum stimulation required a conserved 5′ element and c-fos 3′ sequence. Cell 42:889–902.
  • Walsh, K. 1989. Cross-binding of factors to functionally different promoter elements in c-fos and skeletal actin genes. Mol. Cell. Biol. 9:2191–2201.
  • Wigler, M., P. Sweet, G. K. Sim, B. Wold, A. Pellicer, E. Lacy, T. Maniatis, S. Silverstein, and R. Axel. 1979. Transformation of mammalian cells with genes from procaryotes. Cell 16:777–785.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.