6
Views
4
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Structure of the DNA Damage-Inducible Gene DDR48 and Evidence for Its Role in Mutagenesis in Sacharomyces cerevisiae

&
Pages 3174-3184 | Received 29 Jan 1990, Accepted 16 Mar 1990, Published online: 01 Apr 2023

Literature Cited

  • Angulo, J. F., J. Schwencke, P. L. Moreau, E. Moustacchi, and R. Devoret. 1985. A yeast protein analogous to Escherichia coli RecA protein whose cellular level is enhanced after UV irradiation. Mol. Gen. Genet. 201:20–24.
  • Bardwell, J. C. A., and E. A. Craig. 1984. Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proc. Natl. Acad. Sci. USA 81:848–852.
  • Bennetzen, J. L., and B. D. Hall. 1982. The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase I. J. Biol. Chem. 257:3018–3025.
  • Bennetzen, J. L., and B. D. Hall. 1982. Codon selection in yeast. J. Biol. Chem. 257:3026–3031.
  • Buchman, A. R., N. F. Lue, and R. D. Kornberg. 1988. Connections between transcriptional activators, silencers, and telomeres as revealed by functional analysis of a yeast DNA-binding protein. Mol. Cell. Biol. 8:5086–5099.
  • Casadaban, M. J., A. Martinez-Arias, S. K. Shapira, and J. Chou. 1983. β-galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Methods Enzymol. 100:293–308.
  • Cassier, C., R. Chanet, J. A. P. Henriques, and E. Moustacchi. 1980. The effects of three PSO genes on induced mutagenesis: a novel class of mutationally defective yeast. Genetics 96:841–857.
  • Donahue, T. F., P. J. Farabaugh, and G. R. Fink. 1981. Suppressible four-base glycine and proline codons in yeast. Science 212:455–457.
  • Elledge, S. J., and R. W. Davis. 1987. Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability. Mol. Cell. Biol. 7:2783–2793.
  • Hahn, S., E. T. Hoar, and L. Guarente. 1985. Each of three "TATA elements" specifies a subset of the transcription initiation sites at the CYC1 promoter of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 82:8562–8566.
  • Haynes, R. H., and B. A. Kunz. 1981. DNA repair and mutagenesis in yeast, p. 371–414. In J. N. Strathem, E. W. Jones, and J. R. Roach (ed.), The molecular biology of the yeast Saccharomyces, vol. 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hinnen, A., J. B. Hicks, and G. R. Fink. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75:1929–1933.
  • Holm, C., D. W. Meeks-Wagner, W. L. Fangman, and D. Botstein. 1986. A rapid, efficient method for isolating DNA from yeast. Gene 42:169–173.
  • Hu, N., and J. Messing. 1982. The making of strand-specific M13 probes. Gene 17:271–277.
  • Hurd, H. K., C. W. Roberts, and J. W. Roberts. 1987. Identification of the gene for the yeast ribonucleotide reductase small subunit and its inducibility by methyl methanesulfonate. Mol. Cell. Biol. 7:3673–3677.
  • Kornfeld, R., and S. Kornfeld. 1985. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54:631–664.
  • Lindquist, S. 1986. The heat shock response. Annu. Rev. Biochem. 55:1151–1191.
  • Luria, S. E., and M. Delbrück. 1943. Mutations in bacteria from virus sensitivity to virus resistance. Genetics 28:491–511.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual, p. 125. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • McClanahan, T., and K. McEntee. 1984. Specific transcripts are elevated in Saccharomyces cerevisiae in response to DNA damage. Mol. Cell. Biol. 4:2356–2363.
  • McClanahan, T., and K. McEntee. 1986. DNA damage and heat shock dually regulate genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:90–96.
  • Miller, K. J. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Prakash, L., J. W. Stewart, and F. Sherman. 1974. Specific induction of transitions and transversions of G-C base pairs by 4-nitroquinoline-1-oxide in iso-1-cytochrome C mutants of yeast. J. Mol. Biol. 85:51–65.
  • Quah, S.-K., R. C. von Borstel, and P. J. Hastings. 1980. The origin of spontaneous mutation in Saccharomyces cerevisiae. Genetics 96:819–839.
  • Rothstein, R. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Ruby, S., J. W. Szostak, and A. W. Murray. 1983. Cloning regulated yeast genes from a pool of lacZ fusions. Methods Enzymol. 101:253–269.
  • Sanger, F., S. Nicklen, and A. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Schlesinger, M. J., M. Ashburner, and A. Tissures (ed.). 1982. Heat shock from bacteria to man. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shore, D., and K. Nasmyth. 1987. Purification and cloning of a DNA-binding protein that binds to both silencer and activator elements. Cell 51:721–732.
  • Simon, J. R., and K. McEntee. 1989. A rapid and efficient procedure for transformation of intact Saccharomyces cerevisiae by electroporation. Biochem. Biophys. Res. Commun. 164:1157–1164.
  • Strahl, K. 1989. Molecular mechanisms of transcription regulation in yeast. Annu. Rev. Biochem. 58:1051–1077.
  • Treger, J. M., K. A. Heichman, and K. McEntee. 1988. Expression of the yeast UBI4 gene increases in response to DNA- damaging agents and in meiosis. Mol. Cell. Biol. 8:1132–1136.
  • Walker, G. C. 1985. Inducible DNA repair systems. Annu. Rev. Biochem. 54:425–457.
  • Walker, G. C., L. Marsh, and L. A. Dodson. 1985. Genetic analysis of DNA repair: inference and extrapolation. Annu. Rev. Genet. 19:103–126.
  • Whelan, W. L., E. Gocke, and T. R. Mariney. 1979. The CAN1 locus of Saccharomyces cerevisiae: fine structure analysis and forward mutation rates. Genetics 91:35–51.
  • Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of M13mpl8 and pUC19 vectors. Gene 33:103–119.
  • Zaret, K. S., and F. Sherman. 1982. DNA sequence required for efficient transcription termination in yeast. Cell 28:563–673.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.